Pull iterators out of CFG.h and CFGdecls and put them in Support directory

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@664 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-09-28 22:56:31 +00:00
parent c56d779501
commit 3ff4387113
24 changed files with 284 additions and 458 deletions

View File

@ -24,7 +24,9 @@
#include "llvm/Value.h" // Get the definition of Value
#include "llvm/ValueHolder.h"
#include "llvm/CFGdecls.h"
#include "llvm/Support/GraphTraits.h"
#include "llvm/CFGdecls.h" // TODO FIXME: remove
class Instruction;
class Method;
@ -140,4 +142,68 @@ public:
BasicBlock *splitBasicBlock(iterator I);
};
#include "llvm/CFG.h" // TODO FIXME when succ iterators are in BB.h
// Provide specializations of GraphTraits to be able to treat a method as a
// graph of basic blocks...
template <> struct GraphTraits<BasicBlock*> {
typedef BasicBlock NodeType;
typedef BasicBlock::succ_iterator ChildIteratorType;
static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
static inline ChildIteratorType child_begin(NodeType *N) {
return cfg::succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return cfg::succ_end(N);
}
};
template <> struct GraphTraits<const BasicBlock*> {
typedef const BasicBlock NodeType;
typedef BasicBlock::succ_const_iterator ChildIteratorType;
static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
static inline ChildIteratorType child_begin(NodeType *N) {
return cfg::succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return cfg::succ_end(N);
}
};
// Provide specializations of GraphTraits to be able to treat a method as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a method is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<BasicBlock*> > {
typedef BasicBlock NodeType;
typedef BasicBlock::pred_iterator ChildIteratorType;
static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
static inline ChildIteratorType child_begin(NodeType *N) {
return cfg::pred_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return cfg::pred_end(N);
}
};
template <> struct GraphTraits<Inverse<const BasicBlock*> > {
typedef const BasicBlock NodeType;
typedef BasicBlock::pred_const_iterator ChildIteratorType;
static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
return G.Graph;
}
static inline ChildIteratorType child_begin(NodeType *N) {
return cfg::pred_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return cfg::pred_end(N);
}
};
#endif

View File

@ -21,13 +21,10 @@
#define LLVM_CFG_H
#include "llvm/CFGdecls.h" // See this file for concise interface info
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h"
#include "llvm/Type.h"
#include <iterator>
#include <stack>
#include <set>
namespace cfg {
@ -147,362 +144,6 @@ inline succ_const_iterator succ_end(const BasicBlock *BB) {
return succ_const_iterator(BB->getTerminator(),true);
}
//===----------------------------------------------------------------------===//
// Graph Type Declarations
//
// BasicBlockGraph - Represent a standard traversal of a CFG
// ConstBasicBlockGraph - Represent a standard traversal of a const CFG
// InverseBasicBlockGraph - Represent a inverse traversal of a CFG
// ConstInverseBasicBlockGraph - Represent a inverse traversal of a const CFG
//
// An Inverse traversal of a graph is where we chase predecessors, instead of
// successors.
//
struct BasicBlockGraph {
typedef BasicBlock NodeType;
typedef succ_iterator ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
struct ConstBasicBlockGraph {
typedef const BasicBlock NodeType;
typedef succ_const_iterator ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
struct InverseBasicBlockGraph {
typedef BasicBlock NodeType;
typedef pred_iterator ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return pred_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return pred_end(N);
}
};
struct ConstInverseBasicBlockGraph {
typedef const BasicBlock NodeType;
typedef pred_const_iterator ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return pred_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return pred_end(N);
}
};
struct TypeGraph {
typedef const ::Type NodeType;
typedef ::Type::subtype_iterator ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
//===----------------------------------------------------------------------===//
// Depth First Iterator
//
// Generic Depth First Iterator
template<class GI>
class DFIterator : public std::forward_iterator<typename GI::NodeType,
ptrdiff_t> {
typedef typename GI::NodeType NodeType;
typedef typename GI::ChildIteratorType ChildItTy;
set<NodeType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is node pointer, second is the 'next child' to visit
stack<pair<NodeType *, ChildItTy> > VisitStack;
const bool Reverse; // Iterate over children before self?
private:
void reverseEnterNode() {
pair<NodeType *, ChildItTy> &Top = VisitStack.top();
NodeType *Node = Top.first;
ChildItTy &It = Top.second;
for (; It != GI::child_end(Node); ++It) {
NodeType *Child = *It;
if (!Visited.count(Child)) {
Visited.insert(Child);
VisitStack.push(make_pair(Child, GI::child_begin(Child)));
reverseEnterNode();
return;
}
}
}
public:
typedef DFIterator<GI> _Self;
inline DFIterator(NodeType *Node, bool reverse) : Reverse(reverse) {
Visited.insert(Node);
VisitStack.push(make_pair(Node, GI::child_begin(Node)));
if (Reverse) reverseEnterNode();
}
inline DFIterator() { /* End is when stack is empty */ }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
if (Reverse) { // Reverse Depth First Iterator
if (VisitStack.top().second == GI::child_end(VisitStack.top().first))
VisitStack.pop();
if (!VisitStack.empty())
reverseEnterNode();
} else { // Normal Depth First Iterator
do {
pair<NodeType *, ChildItTy> &Top = VisitStack.top();
NodeType *Node = Top.first;
ChildItTy &It = Top.second;
while (It != GI::child_end(Node)) {
NodeType *Next = *It++;
if (!Visited.count(Next)) { // Has our next sibling been visited?
// No, do it now.
Visited.insert(Next);
VisitStack.push(make_pair(Next, GI::child_begin(Next)));
return *this;
}
}
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop();
} while (!VisitStack.empty());
}
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
inline bool nodeVisited(NodeType *Node) const {
return Visited.count(Node) != 0;
}
};
inline df_iterator df_begin(Method *M, bool Reverse = false) {
return df_iterator(M->front(), Reverse);
}
inline df_const_iterator df_begin(const Method *M, bool Reverse = false) {
return df_const_iterator(M->front(), Reverse);
}
inline df_iterator df_end(Method*) {
return df_iterator();
}
inline df_const_iterator df_end(const Method*) {
return df_const_iterator();
}
inline df_iterator df_begin(BasicBlock *BB, bool Reverse = false) {
return df_iterator(BB, Reverse);
}
inline df_const_iterator df_begin(const BasicBlock *BB, bool Reverse = false) {
return df_const_iterator(BB, Reverse);
}
inline df_iterator df_end(BasicBlock*) {
return df_iterator();
}
inline df_const_iterator df_end(const BasicBlock*) {
return df_const_iterator();
}
inline idf_iterator idf_begin(BasicBlock *BB, bool Reverse = false) {
return idf_iterator(BB, Reverse);
}
inline idf_const_iterator idf_begin(const BasicBlock *BB, bool Reverse = false) {
return idf_const_iterator(BB, Reverse);
}
inline idf_iterator idf_end(BasicBlock*) {
return idf_iterator();
}
inline idf_const_iterator idf_end(const BasicBlock*) {
return idf_const_iterator();
}
inline tdf_iterator tdf_begin(const Type *T, bool Reverse = false) {
return tdf_iterator(T, Reverse);
}
inline tdf_iterator tdf_end (const Type *T) {
return tdf_iterator();
}
//===----------------------------------------------------------------------===//
// Post Order CFG iterator code
//
template<class BBType, class SuccItTy>
class POIterator : public std::forward_iterator<BBType, ptrdiff_t> {
set<BBType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
stack<pair<BBType *, SuccItTy> > VisitStack;
void traverseChild() {
while (VisitStack.top().second != succ_end(VisitStack.top().first)) {
BBType *BB = *VisitStack.top().second++;
if (!Visited.count(BB)) { // If the block is not visited...
Visited.insert(BB);
VisitStack.push(make_pair(BB, succ_begin(BB)));
}
}
}
public:
typedef POIterator<BBType, SuccItTy> _Self;
inline POIterator(BBType *BB) {
Visited.insert(BB);
VisitStack.push(make_pair(BB, succ_begin(BB)));
traverseChild();
}
inline POIterator() { /* End is when stack is empty */ }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline BBType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
VisitStack.pop();
if (!VisitStack.empty())
traverseChild();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// Provide default begin and end methods when nothing special is needed.
static inline _Self begin (BBType *BB) { return _Self(BB); }
static inline _Self end (BBType *BB) { return _Self(); }
};
inline po_iterator po_begin( Method *M) {
return po_iterator(M->front());
}
inline po_const_iterator po_begin(const Method *M) {
return po_const_iterator(M->front());
}
inline po_iterator po_end ( Method *M) {
return po_iterator();
}
inline po_const_iterator po_end (const Method *M) {
return po_const_iterator();
}
inline po_iterator po_begin( BasicBlock *BB) {
return po_iterator(BB);
}
inline po_const_iterator po_begin(const BasicBlock *BB) {
return po_const_iterator(BB);
}
inline po_iterator po_end ( BasicBlock *BB) {
return po_iterator();
}
inline po_const_iterator po_end (const BasicBlock *BB) {
return po_const_iterator();
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than neccesary.
//
// This class should be used like this:
// {
// cfg::ReversePostOrderTraversal RPOT(MethodPtr); // Expensive to create
// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
typedef reverse_iterator<vector<BasicBlock*>::iterator> rpo_iterator;
class ReversePostOrderTraversal {
vector<BasicBlock*> Blocks; // Block list in normal PO order
inline void Initialize(BasicBlock *BB) {
copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
}
public:
inline ReversePostOrderTraversal(Method *M) {
Initialize(M->front());
}
inline ReversePostOrderTraversal(BasicBlock *BB) {
Initialize(BB);
}
// Because we want a reverse post order, use reverse iterators from the vector
inline rpo_iterator begin() { return Blocks.rbegin(); }
inline rpo_iterator end() { return Blocks.rend(); }
};
} // End namespace cfg
#endif

View File

@ -60,7 +60,7 @@ inline succ_const_iterator succ_begin(const BasicBlock *BB);
inline succ_iterator succ_end ( BasicBlock *BB);
inline succ_const_iterator succ_end (const BasicBlock *BB);
#if 0
//===--------------------------------------------------------------------===//
// <Reverse> Depth First CFG iterator code
//===--------------------------------------------------------------------===//
@ -137,6 +137,7 @@ inline po_iterator po_begin( BasicBlock *BB);
inline po_const_iterator po_begin(const BasicBlock *BB);
inline po_iterator po_end ( BasicBlock *BB);
inline po_const_iterator po_end (const BasicBlock *BB);
#endif
} // End namespace cfg

View File

@ -13,7 +13,6 @@
#include "llvm/SymTabValue.h"
#include "llvm/BasicBlock.h"
#include <list>
class Instruction;
class BasicBlock;
@ -201,4 +200,32 @@ public:
inline inst_const_iterator inst_end() const { return inst_const_iterator(*this, true); }
};
// Provide specializations of GraphTraits to be able to treat a method as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the method.
//
template <> struct GraphTraits<Method*> : public GraphTraits<BasicBlock*> {
static NodeType *getEntryNode(Method *M) { return M->front(); }
};
template <> struct GraphTraits<const Method*> :
public GraphTraits<const BasicBlock*> {
static NodeType *getEntryNode(const Method *M) { return M->front(); }
};
// Provide specializations of GraphTraits to be able to treat a method as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a method is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Method*> > :
public GraphTraits<Inverse<BasicBlock*> > {
static NodeType *getEntryNode(Inverse<Method *> G) { return G.Graph->front();}
};
template <> struct GraphTraits<Inverse<const Method*> > :
public GraphTraits<Inverse<const BasicBlock*> > {
static NodeType *getEntryNode(Inverse<const Method *> G) {
return G.Graph->front();
}
};
#endif

View File

@ -27,6 +27,7 @@
#define LLVM_TYPE_H
#include "llvm/Value.h"
#include "llvm/Support/GraphTraits.h"
class DerivedType;
class MethodType;
@ -264,4 +265,34 @@ inline Type::TypeIterator Type::subtype_end() const {
return TypeIterator(this, getNumContainedTypes());
}
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types...
template <> struct GraphTraits<Type*> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(Type *T) { return T; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
template <> struct GraphTraits<const Type*> {
typedef const Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(const Type *T) { return T; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
#endif

View File

@ -7,7 +7,6 @@
#include "llvm/Analysis/Interval.h"
#include "llvm/BasicBlock.h"
#include "llvm/CFG.h"
using namespace cfg;

View File

@ -11,7 +11,7 @@
#include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/PostOrderIterator.h"
/************************** Constructor/Destructor ***************************/
@ -47,9 +47,9 @@ void MethodLiveVarInfo::constructBBs()
{
unsigned int POId = 0; // Reverse Depth-first Order ID
cfg::po_const_iterator BBI = cfg::po_begin(Meth);
po_iterator<const Method*> BBI = po_begin(Meth);
for( ; BBI != cfg::po_end(Meth) ; ++BBI, ++POId)
for( ; BBI != po_end(Meth) ; ++BBI, ++POId)
{
if(DEBUG_LV) cout << " For BB " << (*BBI)->getName() << ":" << endl ;
@ -77,9 +77,9 @@ bool MethodLiveVarInfo::doSingleBackwardPass()
if(DEBUG_LV)
cout << endl << " After Backward Pass ..." << endl;
cfg::po_const_iterator BBI = cfg::po_begin(Meth);
po_iterator<const Method*> BBI = po_begin(Meth);
for( ; BBI != cfg::po_end(Meth) ; ++BBI)
for( ; BBI != po_end(Meth) ; ++BBI)
{
BBLiveVar* LVBB = BB2BBLVMap[*BBI];

View File

@ -6,8 +6,9 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/SimplifyCFG.h" // To get cfg::UnifyAllExitNodes
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/Method.h"
#include <algorithm>
//===----------------------------------------------------------------------===//
@ -59,7 +60,7 @@ void cfg::DominatorSet::calcForwardDominatorSet(const Method *M) {
Changed = false;
DomSetType WorkingSet;
df_const_iterator It = df_begin(M), End = df_end(M);
df_iterator<const Method*> It = df_begin(M), End = df_end(M);
for ( ; It != End; ++It) {
const BasicBlock *BB = *It;
pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
@ -110,7 +111,7 @@ cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
set<const BasicBlock*> Visited;
DomSetType WorkingSet;
idf_const_iterator It = idf_begin(Root), End = idf_end(Root);
idf_iterator<const BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
for ( ; It != End; ++It) {
const BasicBlock *BB = *It;
succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
@ -201,7 +202,7 @@ cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
// Iterate over all nodes in depth first order...
for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
for (df_iterator<const Method*> I = df_begin(M), E = df_end(M); I != E; ++I) {
const BasicBlock *BB = *I, *IDom = IDoms[*I];
if (IDom != 0) { // Ignore the root node and other nasty nodes
@ -223,16 +224,17 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
if (!isPostDominator()) {
// Iterate over all nodes in depth first order...
for (df_const_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) {
for (df_iterator<const BasicBlock*> I = df_begin(Root), E = df_end(Root);
I != E; ++I) {
const BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom! We know that we have already added
// a DominatorTree node for our idom, because the idom must be a
// predecessor in the depth first order that we are iterating through the
@ -241,11 +243,11 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number of elements
// in the dominator set indicates what level the node is at in the chain.
// We want the node immediately above us, so it will have an identical
// dominator set, except that BB will not dominate it... therefore it's
// dominator set size will be one less than BB's...
// All of our dominators should form a chain, where the number of
// elements in the dominator set indicates what level the node is at in
// the chain. We want the node immediately above us, so it will have
// an identical dominator set, except that BB will not dominate it...
// therefore it's dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
// We know that the immediate dominator should already have a node,
@ -263,20 +265,21 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
}
} else if (Root) {
// Iterate over all nodes in depth first order...
for (idf_const_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) {
for (idf_iterator<const BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
I != E; ++I) {
const BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom! We know that we have already added
// a DominatorTree node for our idom, because the idom must be a
// predecessor in the depth first order that we are iterating through the
// method.
// Loop over all dominators of this node. This corresponds to looping
// over nodes in the dominator chain, looking for a node whose dominator
// set is equal to the current nodes, except that the current node does
// not exist in it. This means that it is one level higher in the dom
// chain than the current node, and it is our idom! We know that we have
// already added a DominatorTree node for our idom, because the idom must
// be a predecessor in the depth first order that we are iterating through
// the method.
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();

View File

@ -21,8 +21,8 @@
#include "llvm/DerivedTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/CFG.h" // TODO: Change this when we have a DF.h
#include "llvm/Support/STLExtras.h"
#include "llvm/Support/DepthFirstIterator.h"
#include <list>
#include <utility> // Get definition of pair class
#include <algorithm>
@ -417,7 +417,7 @@ static void setValueName(Value *V, char *NameStr) {
// TypeContains - Returns true if Ty contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
return find(cfg::tdf_begin(Ty), cfg::tdf_end(Ty), E) != cfg::tdf_end(Ty);
return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
}

View File

@ -13,6 +13,7 @@
#include "llvm/Instruction.h"
#include <map>
#include <utility>
#include <list>
// Enable to trace to figure out what the heck is going on when parsing fails
#define TRACE_LEVEL 0

View File

@ -20,7 +20,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include <algorithm>
#if 0
@ -264,8 +264,8 @@ int SlotCalculator::insertVal(const Value *D, bool dontIgnore = false) {
// the type itself is. This also assures us that we will not hit infinite
// recursion on recursive types...
//
for (cfg::tdf_iterator I = cfg::tdf_begin(TheTy, true),
E = cfg::tdf_end(TheTy); I != E; ++I)
for (df_iterator<const Type*> I = df_begin(TheTy, true),
E = df_end(TheTy); I != E; ++I)
if (*I != TheTy) {
// If we haven't seen this sub type before, add it to our type table!
const Type *SubTy = *I;

View File

@ -19,13 +19,14 @@
#ifndef LLVM_CODEGEN_SCHEDGRAPH_H
#define LLVM_CODEGEN_SCHEDGRAPH_H
#include "llvm/CFGdecls.h" // just for graph iterators
#include "llvm/Support/NonCopyable.h"
#include "llvm/Support/HashExtras.h"
#include "llvm/Support/GraphTraits.h"
#include <hash_map>
class Value;
class Instruction;
class TerminatorInst;
class BasicBlock;
class Method;
class TargetMachine;
@ -480,13 +481,36 @@ inline sg_succ_const_iterator succ_end( const SchedGraphNode *N) {
return sg_succ_const_iterator(N->endOutEdges());
}
//
// po_iterator
// po_const_iterator
// Provide specializations of GraphTraits to be able to use graph iterators on
// the scheduling graph!
//
typedef cfg::POIterator<SchedGraphNode, sg_succ_iterator> sg_po_iterator;
typedef cfg::POIterator<const SchedGraphNode,
sg_succ_const_iterator> sg_po_const_iterator;
template <> struct GraphTraits<SchedGraph*> {
typedef SchedGraphNode NodeType;
typedef sg_succ_iterator ChildIteratorType;
static inline NodeType *getEntryNode(SchedGraph *SG) { return SG->getRoot(); }
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
template <> struct GraphTraits<const SchedGraph*> {
typedef const SchedGraphNode NodeType;
typedef sg_succ_const_iterator ChildIteratorType;
static inline NodeType *getEntryNode(const SchedGraph *SG) {
return SG->getRoot();
}
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
//************************ External Functions *****************************/

View File

@ -19,6 +19,7 @@
//**************************************************************************/
#include "SchedPriorities.h"
#include "llvm/Support/PostOrderIterator.h"
SchedPriorities::SchedPriorities(const Method* method,
@ -50,8 +51,7 @@ SchedPriorities::initialize()
void
SchedPriorities::computeDelays(const SchedGraph* graph)
{
sg_po_const_iterator poIter = sg_po_const_iterator::begin(graph->getRoot());
sg_po_const_iterator poEnd = sg_po_const_iterator::end( graph->getRoot());
po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph);
for ( ; poIter != poEnd; ++poIter)
{
const SchedGraphNode* node = *poIter;

View File

@ -25,6 +25,7 @@
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h"
#include "llvm/Target/MachineSchedInfo.h"
#include <list>
class Method;
class MachineInstr;

View File

@ -19,13 +19,14 @@
#ifndef LLVM_CODEGEN_SCHEDGRAPH_H
#define LLVM_CODEGEN_SCHEDGRAPH_H
#include "llvm/CFGdecls.h" // just for graph iterators
#include "llvm/Support/NonCopyable.h"
#include "llvm/Support/HashExtras.h"
#include "llvm/Support/GraphTraits.h"
#include <hash_map>
class Value;
class Instruction;
class TerminatorInst;
class BasicBlock;
class Method;
class TargetMachine;
@ -480,13 +481,36 @@ inline sg_succ_const_iterator succ_end( const SchedGraphNode *N) {
return sg_succ_const_iterator(N->endOutEdges());
}
//
// po_iterator
// po_const_iterator
// Provide specializations of GraphTraits to be able to use graph iterators on
// the scheduling graph!
//
typedef cfg::POIterator<SchedGraphNode, sg_succ_iterator> sg_po_iterator;
typedef cfg::POIterator<const SchedGraphNode,
sg_succ_const_iterator> sg_po_const_iterator;
template <> struct GraphTraits<SchedGraph*> {
typedef SchedGraphNode NodeType;
typedef sg_succ_iterator ChildIteratorType;
static inline NodeType *getEntryNode(SchedGraph *SG) { return SG->getRoot(); }
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
template <> struct GraphTraits<const SchedGraph*> {
typedef const SchedGraphNode NodeType;
typedef sg_succ_const_iterator ChildIteratorType;
static inline NodeType *getEntryNode(const SchedGraph *SG) {
return SG->getRoot();
}
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
//************************ External Functions *****************************/

View File

@ -19,6 +19,7 @@
//**************************************************************************/
#include "SchedPriorities.h"
#include "llvm/Support/PostOrderIterator.h"
SchedPriorities::SchedPriorities(const Method* method,
@ -50,8 +51,7 @@ SchedPriorities::initialize()
void
SchedPriorities::computeDelays(const SchedGraph* graph)
{
sg_po_const_iterator poIter = sg_po_const_iterator::begin(graph->getRoot());
sg_po_const_iterator poEnd = sg_po_const_iterator::end( graph->getRoot());
po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph);
for ( ; poIter != poEnd; ++poIter)
{
const SchedGraphNode* node = *poIter;

View File

@ -25,6 +25,7 @@
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h"
#include "llvm/Target/MachineSchedInfo.h"
#include <list>
class Method;
class MachineInstr;

View File

@ -11,7 +11,7 @@
#include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/PostOrderIterator.h"
/************************** Constructor/Destructor ***************************/
@ -47,9 +47,9 @@ void MethodLiveVarInfo::constructBBs()
{
unsigned int POId = 0; // Reverse Depth-first Order ID
cfg::po_const_iterator BBI = cfg::po_begin(Meth);
po_iterator<const Method*> BBI = po_begin(Meth);
for( ; BBI != cfg::po_end(Meth) ; ++BBI, ++POId)
for( ; BBI != po_end(Meth) ; ++BBI, ++POId)
{
if(DEBUG_LV) cout << " For BB " << (*BBI)->getName() << ":" << endl ;
@ -77,9 +77,9 @@ bool MethodLiveVarInfo::doSingleBackwardPass()
if(DEBUG_LV)
cout << endl << " After Backward Pass ..." << endl;
cfg::po_const_iterator BBI = cfg::po_begin(Meth);
po_iterator<const Method*> BBI = po_begin(Meth);
for( ; BBI != cfg::po_end(Meth) ; ++BBI)
for( ; BBI != po_end(Meth) ; ++BBI)
{
BBLiveVar* LVBB = BB2BBLVMap[*BBI];

View File

@ -11,8 +11,8 @@
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/Support/DepthFirstIterator.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/CFG.h"
#include "llvm/iTerminators.h"
#include <set>
#include <algorithm>
@ -90,7 +90,8 @@ bool ADCE::doADCE() {
// instructions live in basic blocks that are unreachable. These blocks will
// be eliminated later, along with the instructions inside.
//
for (cfg::df_iterator BBI = cfg::df_begin(M), BBE = cfg::df_end(M);
for (df_iterator<Method*> BBI = df_begin(M),
BBE = df_end(M);
BBI != BBE; ++BBI) {
BasicBlock *BB = *BBI;
for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {

View File

@ -6,8 +6,9 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/SimplifyCFG.h" // To get cfg::UnifyAllExitNodes
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/Method.h"
#include <algorithm>
//===----------------------------------------------------------------------===//
@ -59,7 +60,7 @@ void cfg::DominatorSet::calcForwardDominatorSet(const Method *M) {
Changed = false;
DomSetType WorkingSet;
df_const_iterator It = df_begin(M), End = df_end(M);
df_iterator<const Method*> It = df_begin(M), End = df_end(M);
for ( ; It != End; ++It) {
const BasicBlock *BB = *It;
pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
@ -110,7 +111,7 @@ cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
set<const BasicBlock*> Visited;
DomSetType WorkingSet;
idf_const_iterator It = idf_begin(Root), End = idf_end(Root);
idf_iterator<const BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
for ( ; It != End; ++It) {
const BasicBlock *BB = *It;
succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
@ -201,7 +202,7 @@ cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
// Iterate over all nodes in depth first order...
for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
for (df_iterator<const Method*> I = df_begin(M), E = df_end(M); I != E; ++I) {
const BasicBlock *BB = *I, *IDom = IDoms[*I];
if (IDom != 0) { // Ignore the root node and other nasty nodes
@ -223,16 +224,17 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
if (!isPostDominator()) {
// Iterate over all nodes in depth first order...
for (df_const_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) {
for (df_iterator<const BasicBlock*> I = df_begin(Root), E = df_end(Root);
I != E; ++I) {
const BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom! We know that we have already added
// a DominatorTree node for our idom, because the idom must be a
// predecessor in the depth first order that we are iterating through the
@ -241,11 +243,11 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number of elements
// in the dominator set indicates what level the node is at in the chain.
// We want the node immediately above us, so it will have an identical
// dominator set, except that BB will not dominate it... therefore it's
// dominator set size will be one less than BB's...
// All of our dominators should form a chain, where the number of
// elements in the dominator set indicates what level the node is at in
// the chain. We want the node immediately above us, so it will have
// an identical dominator set, except that BB will not dominate it...
// therefore it's dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
// We know that the immediate dominator should already have a node,
@ -263,20 +265,21 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) {
}
} else if (Root) {
// Iterate over all nodes in depth first order...
for (idf_const_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) {
for (idf_iterator<const BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
I != E; ++I) {
const BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom! We know that we have already added
// a DominatorTree node for our idom, because the idom must be a
// predecessor in the depth first order that we are iterating through the
// method.
// Loop over all dominators of this node. This corresponds to looping
// over nodes in the dominator chain, looking for a node whose dominator
// set is equal to the current nodes, except that the current node does
// not exist in it. This means that it is one level higher in the dom
// chain than the current node, and it is our idom! We know that we have
// already added a DominatorTree node for our idom, because the idom must
// be a predecessor in the depth first order that we are iterating through
// the method.
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();

View File

@ -20,7 +20,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include <algorithm>
#if 0
@ -264,8 +264,8 @@ int SlotCalculator::insertVal(const Value *D, bool dontIgnore = false) {
// the type itself is. This also assures us that we will not hit infinite
// recursion on recursive types...
//
for (cfg::tdf_iterator I = cfg::tdf_begin(TheTy, true),
E = cfg::tdf_end(TheTy); I != E; ++I)
for (df_iterator<const Type*> I = df_begin(TheTy, true),
E = df_end(TheTy); I != E; ++I)
if (*I != TheTy) {
// If we haven't seen this sub type before, add it to our type table!
const Type *SubTy = *I;

View File

@ -23,7 +23,8 @@
#include "llvm/Bytecode/Reader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Method.h"
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include "llvm/Support/PostOrderIterator.h"
// OutputMode - The different orderings to print basic blocks in...
enum OutputMode {
@ -99,19 +100,19 @@ int main(int argc, char **argv) {
switch (WriteMode) {
case dfo: // Depth First ordering
copy(cfg::df_begin(M), cfg::df_end(M),
copy(df_begin(M), df_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case rdfo: // Reverse Depth First ordering
copy(cfg::df_begin(M, true), cfg::df_end(M),
copy(df_begin(M, true), df_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case po: // Post Order
copy(cfg::po_begin(M), cfg::po_end(M),
copy(po_begin(M), po_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case rpo: { // Reverse Post Order
cfg::ReversePostOrderTraversal RPOT(M);
ReversePostOrderTraversal RPOT(M);
copy(RPOT.begin(), RPOT.end(),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;

View File

@ -23,7 +23,8 @@
#include "llvm/Bytecode/Reader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Method.h"
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include "llvm/Support/PostOrderIterator.h"
// OutputMode - The different orderings to print basic blocks in...
enum OutputMode {
@ -99,19 +100,19 @@ int main(int argc, char **argv) {
switch (WriteMode) {
case dfo: // Depth First ordering
copy(cfg::df_begin(M), cfg::df_end(M),
copy(df_begin(M), df_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case rdfo: // Reverse Depth First ordering
copy(cfg::df_begin(M, true), cfg::df_end(M),
copy(df_begin(M, true), df_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case po: // Post Order
copy(cfg::po_begin(M), cfg::po_end(M),
copy(po_begin(M), po_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case rpo: { // Reverse Post Order
cfg::ReversePostOrderTraversal RPOT(M);
ReversePostOrderTraversal RPOT(M);
copy(RPOT.begin(), RPOT.end(),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;

View File

@ -23,7 +23,8 @@
#include "llvm/Bytecode/Reader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Method.h"
#include "llvm/CFG.h"
#include "llvm/Support/DepthFirstIterator.h"
#include "llvm/Support/PostOrderIterator.h"
// OutputMode - The different orderings to print basic blocks in...
enum OutputMode {
@ -99,19 +100,19 @@ int main(int argc, char **argv) {
switch (WriteMode) {
case dfo: // Depth First ordering
copy(cfg::df_begin(M), cfg::df_end(M),
copy(df_begin(M), df_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case rdfo: // Reverse Depth First ordering
copy(cfg::df_begin(M, true), cfg::df_end(M),
copy(df_begin(M, true), df_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case po: // Post Order
copy(cfg::po_begin(M), cfg::po_end(M),
copy(po_begin(M), po_end(M),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;
case rpo: { // Reverse Post Order
cfg::ReversePostOrderTraversal RPOT(M);
ReversePostOrderTraversal RPOT(M);
copy(RPOT.begin(), RPOT.end(),
ostream_iterator<BasicBlock*>(*Out, "\n"));
break;