mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-02 07:11:49 +00:00
Eliminate unnecessary APInt construction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35740 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
6db928a62e
commit
414de4df41
@ -500,7 +500,7 @@ static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
|
||||
// Handle this case efficiently, it is common to have constant iteration
|
||||
// counts while computing loop exit values.
|
||||
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
|
||||
APInt Val = SC->getValue()->getValue();
|
||||
const APInt& Val = SC->getValue()->getValue();
|
||||
APInt Result(Val.getBitWidth(), 1);
|
||||
for (; NumSteps; --NumSteps)
|
||||
Result *= Val-(NumSteps-1);
|
||||
@ -1336,7 +1336,7 @@ SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
|
||||
/// example, turn {4,+,8} -> 4. (S umod result) should always equal zero.
|
||||
static APInt GetConstantFactor(SCEVHandle S) {
|
||||
if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
|
||||
APInt V = C->getValue()->getValue();
|
||||
const APInt& V = C->getValue()->getValue();
|
||||
if (!V.isMinValue())
|
||||
return V;
|
||||
else // Zero is a multiple of everything.
|
||||
@ -2096,23 +2096,22 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
|
||||
}
|
||||
|
||||
uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
|
||||
APInt L(LC->getValue()->getValue());
|
||||
APInt M(MC->getValue()->getValue());
|
||||
APInt N(MC->getValue()->getValue());
|
||||
const APInt& L = LC->getValue()->getValue();
|
||||
const APInt& M = MC->getValue()->getValue();
|
||||
const APInt& N = MC->getValue()->getValue();
|
||||
APInt Two(BitWidth, 2);
|
||||
APInt Four(BitWidth, 4);
|
||||
|
||||
{
|
||||
using namespace APIntOps;
|
||||
APInt C(L);
|
||||
const APInt& C = L;
|
||||
// Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
|
||||
// The B coefficient is M-N/2
|
||||
APInt B(M);
|
||||
B -= sdiv(N,Two);
|
||||
|
||||
// The A coefficient is N/2
|
||||
APInt A(N);
|
||||
A = A.sdiv(Two);
|
||||
APInt A(N.sdiv(Two));
|
||||
|
||||
// Compute the B^2-4ac term.
|
||||
APInt SqrtTerm(B);
|
||||
|
Loading…
Reference in New Issue
Block a user