mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-25 03:30:37 +00:00
[NaryReassoc] reassociate GEP for CSE
Summary: x = &a[i]; y = &a[i + j]; => y = x + j; along with some refactoring work such as extracting method findClosestMatchingDominator. Depends on D9786 which provides the ScalarEvolution::getGEPExpr interface. Test Plan: nary-gep.ll Reviewers: meheff, broune Reviewed By: broune Subscribers: jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D9802 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237971 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b86942cca4
commit
41cf9ae1b8
@ -85,6 +85,7 @@
|
||||
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/PatternMatch.h"
|
||||
@ -104,6 +105,10 @@ public:
|
||||
initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
bool doInitialization(Module &M) override {
|
||||
DL = &M.getDataLayout();
|
||||
return false;
|
||||
}
|
||||
bool runOnFunction(Function &F) override;
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
@ -113,6 +118,7 @@ public:
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
AU.addRequired<ScalarEvolution>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||||
AU.setPreservesCFG();
|
||||
}
|
||||
|
||||
@ -120,16 +126,49 @@ private:
|
||||
// Runs only one iteration of the dominator-based algorithm. See the header
|
||||
// comments for why we need multiple iterations.
|
||||
bool doOneIteration(Function &F);
|
||||
// Reasssociates I to a better form.
|
||||
Instruction *tryReassociateAdd(Instruction *I);
|
||||
|
||||
// Reassociates I for better CSE.
|
||||
Instruction *tryReassociate(Instruction *I);
|
||||
|
||||
// Reassociate GEP for better CSE.
|
||||
Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
|
||||
// Try splitting GEP at the I-th index and see whether either part can be
|
||||
// CSE'ed. This is a helper function for tryReassociateGEP.
|
||||
//
|
||||
// \p IndexedType The element type indexed by GEP's I-th index. This is
|
||||
// equivalent to
|
||||
// GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
|
||||
// ..., i-th index).
|
||||
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Type *IndexedType);
|
||||
// Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
|
||||
// &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
|
||||
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Value *LHS,
|
||||
Value *RHS, Type *IndexedType);
|
||||
|
||||
// Reassociate Add for better CSE.
|
||||
Instruction *tryReassociateAdd(BinaryOperator *I);
|
||||
// A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
|
||||
Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
|
||||
// Rewrites I to LHS + RHS if LHS is computed already.
|
||||
Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
|
||||
|
||||
// Returns the closest dominator of \c Dominatee that computes
|
||||
// \c CandidateExpr. Returns null if not found.
|
||||
Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||||
Instruction *Dominatee);
|
||||
// GetElementPtrInst implicitly sign-extends an index if the index is shorter
|
||||
// than the pointer size. This function returns whether Index is shorter than
|
||||
// GEP's pointer size, i.e., whether Index needs to be sign-extended in order
|
||||
// to be an index of GEP.
|
||||
bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
|
||||
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
TargetLibraryInfo *TLI;
|
||||
TargetTransformInfo *TTI;
|
||||
const DataLayout *DL;
|
||||
// A lookup table quickly telling which instructions compute the given SCEV.
|
||||
// Note that there can be multiple instructions at different locations
|
||||
// computing to the same SCEV, so we map a SCEV to an instruction list. For
|
||||
@ -149,6 +188,7 @@ INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
|
||||
false, false)
|
||||
|
||||
@ -163,6 +203,7 @@ bool NaryReassociate::runOnFunction(Function &F) {
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
SE = &getAnalysis<ScalarEvolution>();
|
||||
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
||||
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||||
|
||||
bool Changed = false, ChangedInThisIteration;
|
||||
do {
|
||||
@ -172,26 +213,36 @@ bool NaryReassociate::runOnFunction(Function &F) {
|
||||
return Changed;
|
||||
}
|
||||
|
||||
// Whitelist the instruction types NaryReassociate handles for now.
|
||||
static bool isPotentiallyNaryReassociable(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
case Instruction::GetElementPtr:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool NaryReassociate::doOneIteration(Function &F) {
|
||||
bool Changed = false;
|
||||
SeenExprs.clear();
|
||||
// Traverse the dominator tree in the depth-first order. This order makes sure
|
||||
// all bases of a candidate are in Candidates when we process it.
|
||||
// Process the basic blocks in pre-order of the dominator tree. This order
|
||||
// ensures that all bases of a candidate are in Candidates when we process it.
|
||||
for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
|
||||
Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
|
||||
BasicBlock *BB = Node->getBlock();
|
||||
for (auto I = BB->begin(); I != BB->end(); ++I) {
|
||||
// Skip vector types which are not SCEVable.
|
||||
if (I->getOpcode() == Instruction::Add && !I->getType()->isVectorTy()) {
|
||||
if (Instruction *NewI = tryReassociateAdd(I)) {
|
||||
if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) {
|
||||
if (Instruction *NewI = tryReassociate(I)) {
|
||||
Changed = true;
|
||||
SE->forgetValue(I);
|
||||
I->replaceAllUsesWith(NewI);
|
||||
RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
|
||||
I = NewI;
|
||||
}
|
||||
// We should add the rewritten instruction because tryReassociateAdd may
|
||||
// have invalidated the original one.
|
||||
// Add the rewritten instruction to SeenExprs; the original instruction
|
||||
// is deleted.
|
||||
SeenExprs[SE->getSCEV(I)].push_back(I);
|
||||
}
|
||||
}
|
||||
@ -199,7 +250,168 @@ bool NaryReassociate::doOneIteration(Function &F) {
|
||||
return Changed;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociateAdd(Instruction *I) {
|
||||
Instruction *NaryReassociate::tryReassociate(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
return tryReassociateAdd(cast<BinaryOperator>(I));
|
||||
case Instruction::GetElementPtr:
|
||||
return tryReassociateGEP(cast<GetElementPtrInst>(I));
|
||||
default:
|
||||
llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: extract this method into TTI->getGEPCost.
|
||||
static bool isGEPFoldable(GetElementPtrInst *GEP,
|
||||
const TargetTransformInfo *TTI,
|
||||
const DataLayout *DL) {
|
||||
GlobalVariable *BaseGV = nullptr;
|
||||
int64_t BaseOffset = 0;
|
||||
bool HasBaseReg = false;
|
||||
int64_t Scale = 0;
|
||||
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
|
||||
BaseGV = GV;
|
||||
else
|
||||
HasBaseReg = true;
|
||||
|
||||
gep_type_iterator GTI = gep_type_begin(GEP);
|
||||
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
|
||||
if (isa<SequentialType>(*GTI)) {
|
||||
int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
|
||||
if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
|
||||
BaseOffset += ConstIdx->getSExtValue() * ElementSize;
|
||||
} else {
|
||||
// Needs scale register.
|
||||
if (Scale != 0) {
|
||||
// No addressing mode takes two scale registers.
|
||||
return false;
|
||||
}
|
||||
Scale = ElementSize;
|
||||
}
|
||||
} else {
|
||||
StructType *STy = cast<StructType>(*GTI);
|
||||
uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
|
||||
BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
|
||||
}
|
||||
}
|
||||
return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
|
||||
BaseOffset, HasBaseReg, Scale);
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
|
||||
// Not worth reassociating GEP if it is foldable.
|
||||
if (isGEPFoldable(GEP, TTI, DL))
|
||||
return nullptr;
|
||||
|
||||
gep_type_iterator GTI = gep_type_begin(*GEP);
|
||||
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
|
||||
if (isa<SequentialType>(*GTI++)) {
|
||||
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) {
|
||||
return NewGEP;
|
||||
}
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool NaryReassociate::requiresSignExtension(Value *Index,
|
||||
GetElementPtrInst *GEP) {
|
||||
unsigned PointerSizeInBits =
|
||||
DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
|
||||
return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
|
||||
}
|
||||
|
||||
GetElementPtrInst *
|
||||
NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
|
||||
Type *IndexedType) {
|
||||
Value *IndexToSplit = GEP->getOperand(I + 1);
|
||||
if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit))
|
||||
IndexToSplit = SExt->getOperand(0);
|
||||
|
||||
if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
|
||||
// If the I-th index needs sext and the underlying add is not equipped with
|
||||
// nsw, we cannot split the add because
|
||||
// sext(LHS + RHS) != sext(LHS) + sext(RHS).
|
||||
if (requiresSignExtension(IndexToSplit, GEP) && !AO->hasNoSignedWrap())
|
||||
return nullptr;
|
||||
Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
|
||||
// IndexToSplit = LHS + RHS.
|
||||
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
|
||||
return NewGEP;
|
||||
// Symmetrically, try IndexToSplit = RHS + LHS.
|
||||
if (LHS != RHS) {
|
||||
if (auto *NewGEP =
|
||||
tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
|
||||
return NewGEP;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
GetElementPtrInst *
|
||||
NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
|
||||
Value *LHS, Value *RHS,
|
||||
Type *IndexedType) {
|
||||
// Look for GEP's closest dominator that has the same SCEV as GEP except that
|
||||
// the I-th index is replaced with LHS.
|
||||
SmallVector<const SCEV *, 4> IndexExprs;
|
||||
for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
|
||||
IndexExprs.push_back(SE->getSCEV(*Index));
|
||||
// Replace the I-th index with LHS.
|
||||
IndexExprs[I] = SE->getSCEV(LHS);
|
||||
const SCEV *CandidateExpr = SE->getGEPExpr(
|
||||
GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()),
|
||||
IndexExprs, GEP->isInBounds());
|
||||
|
||||
auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
|
||||
if (Candidate == nullptr)
|
||||
return nullptr;
|
||||
|
||||
PointerType *TypeOfCandidate = dyn_cast<PointerType>(Candidate->getType());
|
||||
// Pretty rare but theoretically possible when a numeric value happens to
|
||||
// share CandidateExpr.
|
||||
if (TypeOfCandidate == nullptr)
|
||||
return nullptr;
|
||||
|
||||
// NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
|
||||
uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
|
||||
Type *ElementType = TypeOfCandidate->getElementType();
|
||||
uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
|
||||
// Another less rare case: because I is not necessarily the last index of the
|
||||
// GEP, the size of the type at the I-th index (IndexedSize) is not
|
||||
// necessarily divisible by ElementSize. For example,
|
||||
//
|
||||
// #pragma pack(1)
|
||||
// struct S {
|
||||
// int a[3];
|
||||
// int64 b[8];
|
||||
// };
|
||||
// #pragma pack()
|
||||
//
|
||||
// sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
|
||||
//
|
||||
// TODO: bail out on this case for now. We could emit uglygep.
|
||||
if (IndexedSize % ElementSize != 0)
|
||||
return nullptr;
|
||||
|
||||
// NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
|
||||
IRBuilder<> Builder(GEP);
|
||||
Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate);
|
||||
if (RHS->getType() != IntPtrTy)
|
||||
RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
|
||||
if (IndexedSize != ElementSize) {
|
||||
RHS = Builder.CreateMul(
|
||||
RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
|
||||
}
|
||||
GetElementPtrInst *NewGEP =
|
||||
cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
|
||||
NewGEP->setIsInBounds(GEP->isInBounds());
|
||||
NewGEP->takeName(GEP);
|
||||
return NewGEP;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) {
|
||||
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
||||
if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
|
||||
return NewI;
|
||||
@ -236,22 +448,34 @@ Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
|
||||
if (Pos == SeenExprs.end())
|
||||
return nullptr;
|
||||
|
||||
auto &LHSCandidates = Pos->second;
|
||||
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
|
||||
// I with LHS + RHS.
|
||||
//
|
||||
// Because we traverse the dominator tree in the pre-order, a
|
||||
auto *LHS = findClosestMatchingDominator(LHSExpr, I);
|
||||
if (LHS == nullptr)
|
||||
return nullptr;
|
||||
|
||||
Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
|
||||
NewI->takeName(I);
|
||||
return NewI;
|
||||
}
|
||||
|
||||
Instruction *
|
||||
NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||||
Instruction *Dominatee) {
|
||||
auto Pos = SeenExprs.find(CandidateExpr);
|
||||
if (Pos == SeenExprs.end())
|
||||
return nullptr;
|
||||
|
||||
auto &Candidates = Pos->second;
|
||||
// Because we process the basic blocks in pre-order of the dominator tree, a
|
||||
// candidate that doesn't dominate the current instruction won't dominate any
|
||||
// future instruction either. Therefore, we pop it out of the stack. This
|
||||
// optimization makes the algorithm O(n).
|
||||
while (!LHSCandidates.empty()) {
|
||||
Instruction *LHS = LHSCandidates.back();
|
||||
if (DT->dominates(LHS, I)) {
|
||||
Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
|
||||
NewI->takeName(I);
|
||||
return NewI;
|
||||
}
|
||||
LHSCandidates.pop_back();
|
||||
while (!Candidates.empty()) {
|
||||
Instruction *Candidate = Candidates.back();
|
||||
if (DT->dominates(Candidate, Dominatee))
|
||||
return Candidate;
|
||||
Candidates.pop_back();
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
77
test/Transforms/NaryReassociate/NVPTX/nary-gep.ll
Normal file
77
test/Transforms/NaryReassociate/NVPTX/nary-gep.ll
Normal file
@ -0,0 +1,77 @@
|
||||
; RUN: opt < %s -nary-reassociate -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
target triple = "nvptx64-unknown-unknown"
|
||||
|
||||
declare void @foo(float*)
|
||||
|
||||
; foo(&a[i]);
|
||||
; foo(&a[i + j]);
|
||||
; =>
|
||||
; t = &a[i];
|
||||
; foo(t);
|
||||
; foo(t + j);
|
||||
define void @reassociate_gep(float* %a, i64 %i, i64 %j) {
|
||||
; CHECK-LABEL: @reassociate_gep(
|
||||
%1 = add i64 %i, %j
|
||||
%2 = getelementptr float, float* %a, i64 %i
|
||||
; CHECK: [[t1:[^ ]+]] = getelementptr float, float* %a, i64 %i
|
||||
call void @foo(float* %2)
|
||||
; CHECK: call void @foo(float* [[t1]])
|
||||
%3 = getelementptr float, float* %a, i64 %1
|
||||
; CHECK: [[t2:[^ ]+]] = getelementptr float, float* [[t1]], i64 %j
|
||||
call void @foo(float* %3)
|
||||
; CHECK: call void @foo(float* [[t2]])
|
||||
ret void
|
||||
}
|
||||
|
||||
; foo(&a[sext(j)]);
|
||||
; foo(&a[sext(i +nsw j)]);
|
||||
; =>
|
||||
; t = &a[sext(j)];
|
||||
; foo(t);
|
||||
; foo(t + sext(i));
|
||||
define void @reassociate_gep_nsw(float* %a, i32 %i, i32 %j) {
|
||||
; CHECK-LABEL: @reassociate_gep_nsw(
|
||||
%1 = add nsw i32 %i, %j
|
||||
%idxprom.1 = sext i32 %1 to i64
|
||||
%idxprom.j = sext i32 %j to i64
|
||||
%2 = getelementptr float, float* %a, i64 %idxprom.j
|
||||
; CHECK: [[t1:[^ ]+]] = getelementptr float, float* %a, i64 %idxprom.j
|
||||
call void @foo(float* %2)
|
||||
; CHECK: call void @foo(float* [[t1]])
|
||||
%3 = getelementptr float, float* %a, i64 %idxprom.1
|
||||
; CHECK: [[sexti:[^ ]+]] = sext i32 %i to i64
|
||||
; CHECK: [[t2:[^ ]+]] = getelementptr float, float* [[t1]], i64 [[sexti]]
|
||||
call void @foo(float* %3)
|
||||
; CHECK: call void @foo(float* [[t2]])
|
||||
ret void
|
||||
}
|
||||
|
||||
; Do not split the second GEP because sext(i + j) != sext(i) + sext(j).
|
||||
define void @reassociate_gep_no_nsw(float* %a, i32 %i, i32 %j) {
|
||||
; CHECK-LABEL: @reassociate_gep_no_nsw(
|
||||
%1 = add i32 %i, %j
|
||||
%2 = getelementptr float, float* %a, i32 %j
|
||||
; CHECK: getelementptr float, float* %a, i32 %j
|
||||
call void @foo(float* %2)
|
||||
%3 = getelementptr float, float* %a, i32 %1
|
||||
; CHECK: getelementptr float, float* %a, i32 %1
|
||||
call void @foo(float* %3)
|
||||
ret void
|
||||
}
|
||||
|
||||
define void @reassociate_gep_128(float* %a, i128 %i, i128 %j) {
|
||||
; CHECK-LABEL: @reassociate_gep_128(
|
||||
%1 = add i128 %i, %j
|
||||
%2 = getelementptr float, float* %a, i128 %i
|
||||
; CHECK: [[t1:[^ ]+]] = getelementptr float, float* %a, i128 %i
|
||||
call void @foo(float* %2)
|
||||
; CHECK: call void @foo(float* [[t1]])
|
||||
%3 = getelementptr float, float* %a, i128 %1
|
||||
; CHECK: [[truncj:[^ ]+]] = trunc i128 %j to i64
|
||||
; CHECK: [[t2:[^ ]+]] = getelementptr float, float* [[t1]], i64 [[truncj]]
|
||||
call void @foo(float* %3)
|
||||
; CHECK: call void @foo(float* [[t2]])
|
||||
ret void
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user