More templatization.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44158 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2007-11-15 05:00:15 +00:00
parent b7e6b1ab70
commit 44a95e06cc
2 changed files with 334 additions and 267 deletions

View File

@ -33,9 +33,11 @@
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
@ -54,6 +56,7 @@ class DominatorTree;
class LoopInfo;
class PHINode;
class Instruction;
template<class N> class LoopInfoBase;
//===----------------------------------------------------------------------===//
/// LoopBase class - Instances of this class are used to represent loops that are
@ -513,7 +516,7 @@ public:
}
private:
friend class LoopInfo;
friend class LoopInfoBase<BlockT>;
LoopBase(BlockT *BB) : ParentLoop(0) {
Blocks.push_back(BB);
}
@ -526,61 +529,352 @@ typedef LoopBase<BasicBlock> Loop;
/// LoopInfo - This class builds and contains all of the top level loop
/// structures in the specified function.
///
class LoopInfo : public FunctionPass {
template<class BlockT>
class LoopInfoBase {
// BBMap - Mapping of basic blocks to the inner most loop they occur in
std::map<BasicBlock*, Loop*> BBMap;
std::vector<Loop*> TopLevelLoops;
friend class LoopBase<BasicBlock>;
std::map<BlockT*, Loop*> BBMap;
std::vector<LoopBase<BlockT>*> TopLevelLoops;
friend class LoopBase<BlockT>;
public:
static char ID; // Pass identification, replacement for typeid
LoopInfo() : FunctionPass(intptr_t(&ID)) {}
~LoopInfo() { releaseMemory(); }
LoopInfoBase() { }
~LoopInfoBase() { releaseMemory(); }
void releaseMemory() {
for (typename std::vector<LoopBase<BlockT>* >::iterator I =
TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear();
}
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef std::vector<Loop*>::const_iterator iterator;
typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
iterator begin() const { return TopLevelLoops.begin(); }
iterator end() const { return TopLevelLoops.end(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
Loop *getLoopFor(const BasicBlock *BB) const {
std::map<BasicBlock *, Loop*>::const_iterator I=
LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
BBMap.find(const_cast<BasicBlock*>(BB));
return I != BBMap.end() ? I->second : 0;
}
/// operator[] - same as getLoopFor...
///
const Loop *operator[](const BasicBlock *BB) const {
const LoopBase<BlockT> *operator[](const BlockT *BB) const {
return getLoopFor(BB);
}
/// getLoopDepth - Return the loop nesting level of the specified block...
///
unsigned getLoopDepth(const BasicBlock *BB) const {
unsigned getLoopDepth(const BlockT *BB) const {
const Loop *L = getLoopFor(BB);
return L ? L->getLoopDepth() : 0;
}
// isLoopHeader - True if the block is a loop header node
bool isLoopHeader(BasicBlock *BB) const {
bool isLoopHeader(BlockT *BB) const {
const Loop *L = getLoopFor(BB);
return L && L->getHeader() == BB;
}
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
LoopBase<BlockT> *removeLoop(iterator I) {
assert(I != end() && "Cannot remove end iterator!");
LoopBase<BlockT> *L = *I;
assert(L->getParentLoop() == 0 && "Not a top-level loop!");
TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
return L;
}
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
LoopBase<BlockT> *&OldLoop = BBMap[BB];
assert(OldLoop && "Block not in a loop yet!");
OldLoop = L;
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
LoopBase<BlockT> *NewLoop) {
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
*I = NewLoop;
assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
"Loops already embedded into a subloop!");
}
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
void addTopLevelLoop(LoopBase<BlockT> *New) {
assert(New->getParentLoop() == 0 && "Loop already in subloop!");
TopLevelLoops.push_back(New);
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BlockT *BB) {
typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
if (I != BBMap.end()) {
for (Loop *L = I->second; L; L = L->getParentLoop())
L->removeBlockFromLoop(BB);
BBMap.erase(I);
}
}
// Internals
static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
if (SubLoop == 0) return true;
if (SubLoop == ParentLoop) return false;
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
}
void Calculate(DominatorTree &DT) {
BlockT *RootNode = DT.getRootNode()->getBlock();
for (df_iterator<BlockT*> NI = df_begin(RootNode),
NE = df_end(RootNode); NI != NE; ++NI)
if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
TopLevelLoops.push_back(L);
}
LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTree &DT) {
if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
std::vector<BlockT *> TodoStack;
// Scan the predecessors of BB, checking to see if BB dominates any of
// them. This identifies backedges which target this node...
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
if (DT.dominates(BB, *I)) // If BB dominates it's predecessor...
TodoStack.push_back(*I);
if (TodoStack.empty()) return 0; // No backedges to this block...
// Create a new loop to represent this basic block...
LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
BBMap[BB] = L;
BlockT *EntryBlock = &BB->getParent()->getEntryBlock();
while (!TodoStack.empty()) { // Process all the nodes in the loop
BlockT *X = TodoStack.back();
TodoStack.pop_back();
if (!L->contains(X) && // As of yet unprocessed??
DT.dominates(EntryBlock, X)) { // X is reachable from entry block?
// Check to see if this block already belongs to a loop. If this occurs
// then we have a case where a loop that is supposed to be a child of the
// current loop was processed before the current loop. When this occurs,
// this child loop gets added to a part of the current loop, making it a
// sibling to the current loop. We have to reparent this loop.
if (LoopBase<BlockT> *SubLoop =
const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
// Remove the subloop from it's current parent...
assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
LoopBase<BlockT> *SLP = SubLoop->ParentLoop; // SubLoopParent
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
SLP->SubLoops.erase(I); // Remove from parent...
// Add the subloop to THIS loop...
SubLoop->ParentLoop = L;
L->SubLoops.push_back(SubLoop);
}
// Normal case, add the block to our loop...
L->Blocks.push_back(X);
// Add all of the predecessors of X to the end of the work stack...
TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
}
}
// If there are any loops nested within this loop, create them now!
for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I)
if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
L->SubLoops.push_back(NewLoop);
NewLoop->ParentLoop = L;
}
// Add the basic blocks that comprise this loop to the BBMap so that this
// loop can be found for them.
//
for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I) {
typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
BBMap.lower_bound(*I);
if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet...
BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
}
// Now that we have a list of all of the child loops of this loop, check to
// see if any of them should actually be nested inside of each other. We can
// accidentally pull loops our of their parents, so we must make sure to
// organize the loop nests correctly now.
{
std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
LoopBase<BlockT> *Child = L->SubLoops[i];
assert(Child->getParentLoop() == L && "Not proper child loop?");
if (LoopBase<BlockT> *ContainingLoop =
ContainingLoops[Child->getHeader()]) {
// If there is already a loop which contains this loop, move this loop
// into the containing loop.
MoveSiblingLoopInto(Child, ContainingLoop);
--i; // The loop got removed from the SubLoops list.
} else {
// This is currently considered to be a top-level loop. Check to see if
// any of the contained blocks are loop headers for subloops we have
// already processed.
for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
if (BlockLoop == 0) { // Child block not processed yet...
BlockLoop = Child;
} else if (BlockLoop != Child) {
LoopBase<BlockT> *SubLoop = BlockLoop;
// Reparent all of the blocks which used to belong to BlockLoops
for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
ContainingLoops[SubLoop->Blocks[j]] = Child;
// There is already a loop which contains this block, that means
// that we should reparent the loop which the block is currently
// considered to belong to to be a child of this loop.
MoveSiblingLoopInto(SubLoop, Child);
--i; // We just shrunk the SubLoops list.
}
}
}
}
}
return L;
}
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
/// the NewParent Loop, instead of being a sibling of it.
void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
LoopBase<BlockT> *NewParent) {
LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
assert(OldParent && OldParent == NewParent->getParentLoop() &&
NewChild != NewParent && "Not sibling loops!");
// Remove NewChild from being a child of OldParent
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
OldParent->SubLoops.erase(I); // Remove from parent's subloops list
NewChild->ParentLoop = 0;
InsertLoopInto(NewChild, NewParent);
}
/// InsertLoopInto - This inserts loop L into the specified parent loop. If the
/// parent loop contains a loop which should contain L, the loop gets inserted
/// into L instead.
void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
BlockT *LHeader = L->getHeader();
assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
// Check to see if it belongs in a child loop...
for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
if (Parent->SubLoops[i]->contains(LHeader)) {
InsertLoopInto(L, Parent->SubLoops[i]);
return;
}
// If not, insert it here!
Parent->SubLoops.push_back(L);
L->ParentLoop = Parent;
}
// Debugging
void print(std::ostream &OS, const Module* ) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->getLoopDepth() << "\n";
#endif
}
};
class LoopInfo : public FunctionPass {
LoopInfoBase<BasicBlock>* LI;
friend class LoopBase<BasicBlock>;
LoopInfoBase<BasicBlock>& getBase() { return *LI; }
public:
static char ID; // Pass identification, replacement for typeid
LoopInfo() : FunctionPass(intptr_t(&ID)) {
LI = new LoopInfoBase<BasicBlock>();
}
~LoopInfo() { LI->releaseMemory(); }
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef std::vector<Loop*>::const_iterator iterator;
inline iterator begin() const { return LI->begin(); }
inline iterator end() const { return LI->end(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
inline Loop *getLoopFor(const BasicBlock *BB) const {
return LI->getLoopFor(BB);
}
/// operator[] - same as getLoopFor...
///
inline const Loop *operator[](const BasicBlock *BB) const {
return LI->getLoopFor(BB);
}
/// getLoopDepth - Return the loop nesting level of the specified block...
///
inline unsigned getLoopDepth(const BasicBlock *BB) const {
return LI->getLoopDepth(BB);
}
// isLoopHeader - True if the block is a loop header node
inline bool isLoopHeader(BasicBlock *BB) const {
return LI->isLoopHeader(BB);
}
/// runOnFunction - Calculate the natural loop information.
///
virtual bool runOnFunction(Function &F);
virtual void releaseMemory();
virtual void releaseMemory() { LI->releaseMemory(); }
void print(std::ostream &O, const Module* = 0) const;
void print(std::ostream *O, const Module* M = 0) const {
if (O) print(*O, M);
virtual void print(std::ostream &O, const Module* M = 0) const {
if (O) LI->print(O, M);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
@ -588,34 +882,33 @@ public:
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
Loop *removeLoop(iterator I);
inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
void changeLoopFor(BasicBlock *BB, Loop *L);
inline void changeLoopFor(BasicBlock *BB, Loop *L) {
LI->changeLoopFor(BB, L);
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop);
inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
LI->changeTopLevelLoop(OldLoop, NewLoop);
}
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
void addTopLevelLoop(Loop *New) {
assert(New->getParentLoop() == 0 && "Loop already in subloop!");
TopLevelLoops.push_back(New);
inline void addTopLevelLoop(Loop *New) {
LI->addTopLevelLoop(New);
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BasicBlock *BB);
private:
void Calculate(DominatorTree &DT);
Loop *ConsiderForLoop(BasicBlock *BB, DominatorTree &DT);
void MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent);
void InsertLoopInto(Loop *L, Loop *Parent);
void removeBlock(BasicBlock *BB) {
LI->removeBlock(BB);
}
};
@ -647,14 +940,17 @@ template <> struct GraphTraits<Loop*> {
};
template<class BlockT>
void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB, LoopInfo &LI) {
void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
LoopInfo &LI) {
assert((Blocks.empty() || LI[getHeader()] == this) &&
"Incorrect LI specified for this loop!");
assert(NewBB && "Cannot add a null basic block to the loop!");
assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
LoopInfoBase<BasicBlock>& LIB = LI.getBase();
// Add the loop mapping to the LoopInfo object...
LI.BBMap[NewBB] = this;
LIB.BBMap[NewBB] = this;
// Add the basic block to this loop and all parent loops...
LoopBase<BlockT> *L = this;

View File

@ -43,243 +43,14 @@ X("loops", "Natural Loop Construction", true);
//
bool LoopInfo::runOnFunction(Function &) {
releaseMemory();
Calculate(getAnalysis<DominatorTree>()); // Update
LI->Calculate(getAnalysis<DominatorTree>()); // Update
return false;
}
void LoopInfo::releaseMemory() {
for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
E = TopLevelLoops.end(); I != E; ++I)
delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear();
}
void LoopInfo::Calculate(DominatorTree &DT) {
BasicBlock *RootNode = DT.getRootNode()->getBlock();
for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
NE = df_end(RootNode); NI != NE; ++NI)
if (Loop *L = ConsiderForLoop(*NI, DT))
TopLevelLoops.push_back(L);
}
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();
}
void LoopInfo::print(std::ostream &OS, const Module* ) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->getLoopDepth() << "\n";
#endif
}
static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
if (SubLoop == 0) return true;
if (SubLoop == ParentLoop) return false;
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
}
Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, DominatorTree &DT) {
if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node?
std::vector<BasicBlock *> TodoStack;
// Scan the predecessors of BB, checking to see if BB dominates any of
// them. This identifies backedges which target this node...
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
if (DT.dominates(BB, *I)) // If BB dominates it's predecessor...
TodoStack.push_back(*I);
if (TodoStack.empty()) return 0; // No backedges to this block...
// Create a new loop to represent this basic block...
Loop *L = new Loop(BB);
BBMap[BB] = L;
BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock();
while (!TodoStack.empty()) { // Process all the nodes in the loop
BasicBlock *X = TodoStack.back();
TodoStack.pop_back();
if (!L->contains(X) && // As of yet unprocessed??
DT.dominates(EntryBlock, X)) { // X is reachable from entry block?
// Check to see if this block already belongs to a loop. If this occurs
// then we have a case where a loop that is supposed to be a child of the
// current loop was processed before the current loop. When this occurs,
// this child loop gets added to a part of the current loop, making it a
// sibling to the current loop. We have to reparent this loop.
if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X)))
if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
// Remove the subloop from it's current parent...
assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
Loop *SLP = SubLoop->ParentLoop; // SubLoopParent
std::vector<Loop*>::iterator I =
std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
SLP->SubLoops.erase(I); // Remove from parent...
// Add the subloop to THIS loop...
SubLoop->ParentLoop = L;
L->SubLoops.push_back(SubLoop);
}
// Normal case, add the block to our loop...
L->Blocks.push_back(X);
// Add all of the predecessors of X to the end of the work stack...
TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
}
}
// If there are any loops nested within this loop, create them now!
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I)
if (Loop *NewLoop = ConsiderForLoop(*I, DT)) {
L->SubLoops.push_back(NewLoop);
NewLoop->ParentLoop = L;
}
// Add the basic blocks that comprise this loop to the BBMap so that this
// loop can be found for them.
//
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I) {
std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I);
if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet...
BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
}
// Now that we have a list of all of the child loops of this loop, check to
// see if any of them should actually be nested inside of each other. We can
// accidentally pull loops our of their parents, so we must make sure to
// organize the loop nests correctly now.
{
std::map<BasicBlock*, Loop*> ContainingLoops;
for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
Loop *Child = L->SubLoops[i];
assert(Child->getParentLoop() == L && "Not proper child loop?");
if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) {
// If there is already a loop which contains this loop, move this loop
// into the containing loop.
MoveSiblingLoopInto(Child, ContainingLoop);
--i; // The loop got removed from the SubLoops list.
} else {
// This is currently considered to be a top-level loop. Check to see if
// any of the contained blocks are loop headers for subloops we have
// already processed.
for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]];
if (BlockLoop == 0) { // Child block not processed yet...
BlockLoop = Child;
} else if (BlockLoop != Child) {
Loop *SubLoop = BlockLoop;
// Reparent all of the blocks which used to belong to BlockLoops
for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
ContainingLoops[SubLoop->Blocks[j]] = Child;
// There is already a loop which contains this block, that means
// that we should reparent the loop which the block is currently
// considered to belong to to be a child of this loop.
MoveSiblingLoopInto(SubLoop, Child);
--i; // We just shrunk the SubLoops list.
}
}
}
}
}
return L;
}
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
/// the NewParent Loop, instead of being a sibling of it.
void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) {
Loop *OldParent = NewChild->getParentLoop();
assert(OldParent && OldParent == NewParent->getParentLoop() &&
NewChild != NewParent && "Not sibling loops!");
// Remove NewChild from being a child of OldParent
std::vector<Loop*>::iterator I =
std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
OldParent->SubLoops.erase(I); // Remove from parent's subloops list
NewChild->ParentLoop = 0;
InsertLoopInto(NewChild, NewParent);
}
/// InsertLoopInto - This inserts loop L into the specified parent loop. If the
/// parent loop contains a loop which should contain L, the loop gets inserted
/// into L instead.
void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) {
BasicBlock *LHeader = L->getHeader();
assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
// Check to see if it belongs in a child loop...
for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
if (Parent->SubLoops[i]->contains(LHeader)) {
InsertLoopInto(L, Parent->SubLoops[i]);
return;
}
// If not, insert it here!
Parent->SubLoops.push_back(L);
L->ParentLoop = Parent;
}
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) {
Loop *&OldLoop = BBMap[BB];
assert(OldLoop && "Block not in a loop yet!");
OldLoop = L;
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(),
TopLevelLoops.end(), OldLoop);
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
*I = NewLoop;
assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
"Loops already embedded into a subloop!");
}
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
Loop *LoopInfo::removeLoop(iterator I) {
assert(I != end() && "Cannot remove end iterator!");
Loop *L = *I;
assert(L->getParentLoop() == 0 && "Not a top-level loop!");
TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
return L;
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void LoopInfo::removeBlock(BasicBlock *BB) {
std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB);
if (I != BBMap.end()) {
for (Loop *L = I->second; L; L = L->getParentLoop())
L->removeBlockFromLoop(BB);
BBMap.erase(I);
}
}
// Ensure this file gets linked when LoopInfo.h is used.
DEFINING_FILE_FOR(LoopInfo)