Generalize SCEVExpander::visitAddRecExpr's GEP persuit, and avoid

sending SCEVUnknowns to expandAddToGEP. This avoids the need for
expandAddToGEP to bend the rules and peek into SCEVUnknown
expressions.

Factor out the code for testing whether a SCEV can be factored by
a constant for use in a GEP index. This allows it to handle
SCEVAddRecExprs, by recursing.

As a result, SCEVExpander can now put more things in GEP indices,
so it emits fewer explicit mul instructions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72366 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2009-05-24 18:06:31 +00:00
parent 3925043af0
commit 453aa4fbf1
4 changed files with 221 additions and 54 deletions

View File

@ -110,8 +110,8 @@ namespace llvm {
private:
/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
/// instead of using ptrtoint+arithmetic+inttoptr.
Value *expandAddToGEP(const SCEVAddExpr *S, const PointerType *PTy,
const Type *Ty, Value *V);
Value *expandAddToGEP(const SCEVHandle *op_begin, const SCEVHandle *op_end,
const PointerType *PTy, const Type *Ty, Value *V);
Value *expand(const SCEV *S);

View File

@ -144,17 +144,89 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
return BO;
}
/// FactorOutConstant - Test if S is evenly divisible by Factor, using signed
/// division. If so, update S with Factor divided out and return true.
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
static bool FactorOutConstant(SCEVHandle &S,
const APInt &Factor,
ScalarEvolution &SE) {
// Everything is divisible by one.
if (Factor == 1)
return true;
// For a Constant, check for a multiple of the given factor.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
if (!C->getValue()->getValue().srem(Factor)) {
ConstantInt *CI =
ConstantInt::get(C->getValue()->getValue().sdiv(Factor));
SCEVHandle Div = SE.getConstant(CI);
S = Div;
return true;
}
// In a Mul, check if there is a constant operand which is a multiple
// of the given factor.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S))
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
if (!C->getValue()->getValue().srem(Factor)) {
std::vector<SCEVHandle> NewMulOps(M->getOperands());
NewMulOps[0] =
SE.getConstant(C->getValue()->getValue().sdiv(Factor));
S = SE.getMulExpr(NewMulOps);
return true;
}
// In an AddRec, check if both start and step are divisible.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
SCEVHandle Start = A->getStart();
if (!FactorOutConstant(Start, Factor, SE))
return false;
SCEVHandle Step = A->getStepRecurrence(SE);
if (!FactorOutConstant(Step, Factor, SE))
return false;
S = SE.getAddRecExpr(Start, Step, A->getLoop());
return true;
}
return false;
}
/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
/// instead of using ptrtoint+arithmetic+inttoptr.
Value *SCEVExpander::expandAddToGEP(const SCEVAddExpr *S,
/// instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis analyze the result. However, it suffers from the
/// underlying bug described in PR2831. Addition in LLVM currently always
/// has two's complement wrapping guaranteed. However, the semantics for
/// getelementptr overflow are ambiguous. In the common case though, this
/// expansion gets used when a GEP in the original code has been converted
/// into integer arithmetic, in which case the resulting code will be no
/// more undefined than it was originally.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEVHandle *op_begin,
const SCEVHandle *op_end,
const PointerType *PTy,
const Type *Ty,
Value *V) {
const Type *ElTy = PTy->getElementType();
SmallVector<Value *, 4> GepIndices;
std::vector<SCEVHandle> Ops = S->getOperands();
std::vector<SCEVHandle> Ops(op_begin, op_end);
bool AnyNonZeroIndices = false;
Ops.pop_back();
// Decend down the pointer's type and attempt to convert the other
// operands into GEP indices, at each level. The first index in a GEP
@ -167,45 +239,27 @@ Value *SCEVExpander::expandAddToGEP(const SCEVAddExpr *S,
std::vector<SCEVHandle> NewOps;
std::vector<SCEVHandle> ScaledOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// Split AddRecs up into parts as either of the parts may be usable
// without the other.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i]))
if (!A->getStart()->isZero()) {
SCEVHandle Start = A->getStart();
Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
A->getStepRecurrence(SE),
A->getLoop()));
Ops[i] = Start;
++e;
}
// If the scale size is not 0, attempt to factor out a scale.
if (ElSize != 0) {
// For a Constant, check for a multiple of the pointer type's
// scale size.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i]))
if (!C->getValue()->getValue().srem(ElSize)) {
ConstantInt *CI =
ConstantInt::get(C->getValue()->getValue().sdiv(ElSize));
SCEVHandle Div = SE.getConstant(CI);
ScaledOps.push_back(Div);
continue;
}
// In a Mul, check if there is a constant operand which is a multiple
// of the pointer type's scale size.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i]))
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
if (!C->getValue()->getValue().srem(ElSize)) {
std::vector<SCEVHandle> NewMulOps(M->getOperands());
NewMulOps[0] =
SE.getConstant(C->getValue()->getValue().sdiv(ElSize));
ScaledOps.push_back(SE.getMulExpr(NewMulOps));
continue;
}
// In an Unknown, check if the underlying value is a Mul by a constant
// which is equal to the pointer type's scale size.
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i]))
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getValue()))
if (BO->getOpcode() == Instruction::Mul)
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
if (CI->getValue() == ElSize) {
ScaledOps.push_back(SE.getUnknown(BO->getOperand(0)));
continue;
}
// If the pointer type's scale size is 1, no scaling is necessary
// and any value can be used.
if (ElSize == 1) {
ScaledOps.push_back(Ops[i]);
SCEVHandle Op = Ops[i];
if (FactorOutConstant(Op, ElSize, SE)) {
ScaledOps.push_back(Op); // Op now has ElSize factored out.
continue;
}
}
// If the operand was not divisible, add it to the list of operands
// we'll scan next iteration.
NewOps.push_back(Ops[i]);
}
Ops = NewOps;
@ -292,17 +346,14 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expand(S->getOperand(S->getNumOperands()-1));
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. This helps
// BasicAliasAnalysis analyze the result. However, it suffers from the
// underlying bug described in PR2831. Addition in LLVM currently always
// has two's complement wrapping guaranteed. However, the semantics for
// getelementptr overflow are ambiguous. In the common case though, this
// expansion gets used when a GEP in the original code has been converted
// into integer arithmetic, in which case the resulting code will be no
// more undefined than it was originally.
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
if (SE.TD)
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
return expandAddToGEP(S, PTy, Ty, V);
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
const std::vector<SCEVHandle> &Ops = S->getOperands();
return expandAddToGEP(Ops.data(), Ops.data() + Ops.size() - 1,
PTy, Ty, V);
}
V = InsertNoopCastOfTo(V, Ty);
@ -357,6 +408,27 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
}
/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
static void ExposePointerBase(SCEVHandle &Base, SCEVHandle &Rest,
ScalarEvolution &SE) {
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
Base = A->getStart();
Rest = SE.getAddExpr(Rest,
SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
A->getStepRecurrence(SE),
A->getLoop()));
}
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
Base = A->getOperand(A->getNumOperands()-1);
std::vector<SCEVHandle> NewAddOps(A->op_begin(), A->op_end());
NewAddOps.back() = Rest;
Rest = SE.getAddExpr(NewAddOps);
ExposePointerBase(Base, Rest, SE);
}
}
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
const Loop *L = S->getLoop();
@ -365,8 +437,25 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
if (!S->getStart()->isZero()) {
std::vector<SCEVHandle> NewOps(S->getOperands());
NewOps[0] = SE.getIntegerSCEV(0, Ty);
Value *Rest = expand(SE.getAddRecExpr(NewOps, L));
return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(Rest)));
SCEVHandle Rest = SE.getAddRecExpr(NewOps, L);
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
if (SE.TD) {
SCEVHandle Base = S->getStart();
SCEVHandle RestArray[1] = Rest;
// Dig into the expression to find the pointer base for a GEP.
ExposePointerBase(Base, RestArray[0], SE);
// If we found a pointer, expand the AddRec with a GEP.
if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
Value *StartV = expand(Base);
assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
}
}
Value *RestV = expand(Rest);
return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(RestV)));
}
// {0,+,1} --> Insert a canonical induction variable into the loop!

View File

@ -0,0 +1,78 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
; RUN: grep getelementptr %t | count 1
; RUN: grep {mul .*, 37} %t | count 1
; RUN: grep {add .*, 5203} %t | count 1
; RUN: not grep cast %t
; This test tests several things. The load and store should use the
; same address instead of having it computed twice, and SCEVExpander should
; be able to reconstruct the full getelementptr, despite it having a few
; obstacles set in its way.
target datalayout = "e-p:64:64:64"
define void @foo(i64 %n, i64 %m, i64 %o, i64 %q, double* nocapture %p) nounwind {
entry:
%tmp = icmp sgt i64 %n, 0 ; <i1> [#uses=1]
br i1 %tmp, label %bb.nph3, label %return
bb.nph: ; preds = %bb2.preheader
%tmp1 = mul i64 %tmp16, %i.02 ; <i64> [#uses=1]
%tmp2 = mul i64 %tmp19, %i.02 ; <i64> [#uses=1]
br label %bb1
bb1: ; preds = %bb2, %bb.nph
%j.01 = phi i64 [ %tmp9, %bb2 ], [ 0, %bb.nph ] ; <i64> [#uses=3]
%tmp3 = add i64 %j.01, %tmp1 ; <i64> [#uses=1]
%tmp4 = add i64 %j.01, %tmp2 ; <i64> [#uses=1]
%z0 = add i64 %tmp4, 5203
%tmp5 = getelementptr double* %p, i64 %z0 ; <double*> [#uses=1]
%tmp6 = load double* %tmp5, align 8 ; <double> [#uses=1]
%tmp7 = fdiv double %tmp6, 2.100000e+00 ; <double> [#uses=1]
%z1 = add i64 %tmp4, 5203
%tmp8 = getelementptr double* %p, i64 %z1 ; <double*> [#uses=1]
store double %tmp7, double* %tmp8, align 8
%tmp9 = add i64 %j.01, 1 ; <i64> [#uses=2]
br label %bb2
bb2: ; preds = %bb1
%tmp10 = icmp slt i64 %tmp9, %m ; <i1> [#uses=1]
br i1 %tmp10, label %bb1, label %bb2.bb3_crit_edge
bb2.bb3_crit_edge: ; preds = %bb2
br label %bb3
bb3: ; preds = %bb2.preheader, %bb2.bb3_crit_edge
%tmp11 = add i64 %i.02, 1 ; <i64> [#uses=2]
br label %bb4
bb4: ; preds = %bb3
%tmp12 = icmp slt i64 %tmp11, %n ; <i1> [#uses=1]
br i1 %tmp12, label %bb2.preheader, label %bb4.return_crit_edge
bb4.return_crit_edge: ; preds = %bb4
br label %bb4.return_crit_edge.split
bb4.return_crit_edge.split: ; preds = %bb.nph3, %bb4.return_crit_edge
br label %return
bb.nph3: ; preds = %entry
%tmp13 = icmp sgt i64 %m, 0 ; <i1> [#uses=1]
%tmp14 = mul i64 %n, 37 ; <i64> [#uses=1]
%tmp15 = mul i64 %tmp14, %o ; <i64> [#uses=1]
%tmp16 = mul i64 %tmp15, %q ; <i64> [#uses=1]
%tmp17 = mul i64 %n, 37 ; <i64> [#uses=1]
%tmp18 = mul i64 %tmp17, %o ; <i64> [#uses=1]
%tmp19 = mul i64 %tmp18, %q ; <i64> [#uses=1]
br i1 %tmp13, label %bb.nph3.split, label %bb4.return_crit_edge.split
bb.nph3.split: ; preds = %bb.nph3
br label %bb2.preheader
bb2.preheader: ; preds = %bb.nph3.split, %bb4
%i.02 = phi i64 [ %tmp11, %bb4 ], [ 0, %bb.nph3.split ] ; <i64> [#uses=3]
br i1 true, label %bb.nph, label %bb3
return: ; preds = %bb4.return_crit_edge.split, %entry
ret void
}

View File

@ -1,6 +1,6 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
; RUN: grep add %t | count 8
; RUN: grep mul %t | count 9
; RUN: grep mul %t | count 7
define void @foo(i64 %n, i64 %m, i64 %o, double* nocapture %p) nounwind {
entry: