mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-11 21:38:19 +00:00
Generalize SCEVExpander::visitAddRecExpr's GEP persuit, and avoid
sending SCEVUnknowns to expandAddToGEP. This avoids the need for expandAddToGEP to bend the rules and peek into SCEVUnknown expressions. Factor out the code for testing whether a SCEV can be factored by a constant for use in a GEP index. This allows it to handle SCEVAddRecExprs, by recursing. As a result, SCEVExpander can now put more things in GEP indices, so it emits fewer explicit mul instructions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72366 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -144,17 +144,89 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
|
||||
return BO;
|
||||
}
|
||||
|
||||
/// FactorOutConstant - Test if S is evenly divisible by Factor, using signed
|
||||
/// division. If so, update S with Factor divided out and return true.
|
||||
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
|
||||
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
|
||||
/// check to see if the divide was folded.
|
||||
static bool FactorOutConstant(SCEVHandle &S,
|
||||
const APInt &Factor,
|
||||
ScalarEvolution &SE) {
|
||||
// Everything is divisible by one.
|
||||
if (Factor == 1)
|
||||
return true;
|
||||
|
||||
// For a Constant, check for a multiple of the given factor.
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
|
||||
if (!C->getValue()->getValue().srem(Factor)) {
|
||||
ConstantInt *CI =
|
||||
ConstantInt::get(C->getValue()->getValue().sdiv(Factor));
|
||||
SCEVHandle Div = SE.getConstant(CI);
|
||||
S = Div;
|
||||
return true;
|
||||
}
|
||||
|
||||
// In a Mul, check if there is a constant operand which is a multiple
|
||||
// of the given factor.
|
||||
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S))
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
|
||||
if (!C->getValue()->getValue().srem(Factor)) {
|
||||
std::vector<SCEVHandle> NewMulOps(M->getOperands());
|
||||
NewMulOps[0] =
|
||||
SE.getConstant(C->getValue()->getValue().sdiv(Factor));
|
||||
S = SE.getMulExpr(NewMulOps);
|
||||
return true;
|
||||
}
|
||||
|
||||
// In an AddRec, check if both start and step are divisible.
|
||||
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
SCEVHandle Start = A->getStart();
|
||||
if (!FactorOutConstant(Start, Factor, SE))
|
||||
return false;
|
||||
SCEVHandle Step = A->getStepRecurrence(SE);
|
||||
if (!FactorOutConstant(Step, Factor, SE))
|
||||
return false;
|
||||
S = SE.getAddRecExpr(Start, Step, A->getLoop());
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
|
||||
/// instead of using ptrtoint+arithmetic+inttoptr.
|
||||
Value *SCEVExpander::expandAddToGEP(const SCEVAddExpr *S,
|
||||
/// instead of using ptrtoint+arithmetic+inttoptr. This helps
|
||||
/// BasicAliasAnalysis analyze the result. However, it suffers from the
|
||||
/// underlying bug described in PR2831. Addition in LLVM currently always
|
||||
/// has two's complement wrapping guaranteed. However, the semantics for
|
||||
/// getelementptr overflow are ambiguous. In the common case though, this
|
||||
/// expansion gets used when a GEP in the original code has been converted
|
||||
/// into integer arithmetic, in which case the resulting code will be no
|
||||
/// more undefined than it was originally.
|
||||
///
|
||||
/// Design note: It might seem desirable for this function to be more
|
||||
/// loop-aware. If some of the indices are loop-invariant while others
|
||||
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
|
||||
/// loop-invariant portions of the overall computation outside the loop.
|
||||
/// However, there are a few reasons this is not done here. Hoisting simple
|
||||
/// arithmetic is a low-level optimization that often isn't very
|
||||
/// important until late in the optimization process. In fact, passes
|
||||
/// like InstructionCombining will combine GEPs, even if it means
|
||||
/// pushing loop-invariant computation down into loops, so even if the
|
||||
/// GEPs were split here, the work would quickly be undone. The
|
||||
/// LoopStrengthReduction pass, which is usually run quite late (and
|
||||
/// after the last InstructionCombining pass), takes care of hoisting
|
||||
/// loop-invariant portions of expressions, after considering what
|
||||
/// can be folded using target addressing modes.
|
||||
///
|
||||
Value *SCEVExpander::expandAddToGEP(const SCEVHandle *op_begin,
|
||||
const SCEVHandle *op_end,
|
||||
const PointerType *PTy,
|
||||
const Type *Ty,
|
||||
Value *V) {
|
||||
const Type *ElTy = PTy->getElementType();
|
||||
SmallVector<Value *, 4> GepIndices;
|
||||
std::vector<SCEVHandle> Ops = S->getOperands();
|
||||
std::vector<SCEVHandle> Ops(op_begin, op_end);
|
||||
bool AnyNonZeroIndices = false;
|
||||
Ops.pop_back();
|
||||
|
||||
// Decend down the pointer's type and attempt to convert the other
|
||||
// operands into GEP indices, at each level. The first index in a GEP
|
||||
@ -167,45 +239,27 @@ Value *SCEVExpander::expandAddToGEP(const SCEVAddExpr *S,
|
||||
std::vector<SCEVHandle> NewOps;
|
||||
std::vector<SCEVHandle> ScaledOps;
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
||||
// Split AddRecs up into parts as either of the parts may be usable
|
||||
// without the other.
|
||||
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i]))
|
||||
if (!A->getStart()->isZero()) {
|
||||
SCEVHandle Start = A->getStart();
|
||||
Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
|
||||
A->getStepRecurrence(SE),
|
||||
A->getLoop()));
|
||||
Ops[i] = Start;
|
||||
++e;
|
||||
}
|
||||
// If the scale size is not 0, attempt to factor out a scale.
|
||||
if (ElSize != 0) {
|
||||
// For a Constant, check for a multiple of the pointer type's
|
||||
// scale size.
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i]))
|
||||
if (!C->getValue()->getValue().srem(ElSize)) {
|
||||
ConstantInt *CI =
|
||||
ConstantInt::get(C->getValue()->getValue().sdiv(ElSize));
|
||||
SCEVHandle Div = SE.getConstant(CI);
|
||||
ScaledOps.push_back(Div);
|
||||
continue;
|
||||
}
|
||||
// In a Mul, check if there is a constant operand which is a multiple
|
||||
// of the pointer type's scale size.
|
||||
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i]))
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
|
||||
if (!C->getValue()->getValue().srem(ElSize)) {
|
||||
std::vector<SCEVHandle> NewMulOps(M->getOperands());
|
||||
NewMulOps[0] =
|
||||
SE.getConstant(C->getValue()->getValue().sdiv(ElSize));
|
||||
ScaledOps.push_back(SE.getMulExpr(NewMulOps));
|
||||
continue;
|
||||
}
|
||||
// In an Unknown, check if the underlying value is a Mul by a constant
|
||||
// which is equal to the pointer type's scale size.
|
||||
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i]))
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getValue()))
|
||||
if (BO->getOpcode() == Instruction::Mul)
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
|
||||
if (CI->getValue() == ElSize) {
|
||||
ScaledOps.push_back(SE.getUnknown(BO->getOperand(0)));
|
||||
continue;
|
||||
}
|
||||
// If the pointer type's scale size is 1, no scaling is necessary
|
||||
// and any value can be used.
|
||||
if (ElSize == 1) {
|
||||
ScaledOps.push_back(Ops[i]);
|
||||
SCEVHandle Op = Ops[i];
|
||||
if (FactorOutConstant(Op, ElSize, SE)) {
|
||||
ScaledOps.push_back(Op); // Op now has ElSize factored out.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// If the operand was not divisible, add it to the list of operands
|
||||
// we'll scan next iteration.
|
||||
NewOps.push_back(Ops[i]);
|
||||
}
|
||||
Ops = NewOps;
|
||||
@ -292,17 +346,14 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
|
||||
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
||||
Value *V = expand(S->getOperand(S->getNumOperands()-1));
|
||||
|
||||
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. This helps
|
||||
// BasicAliasAnalysis analyze the result. However, it suffers from the
|
||||
// underlying bug described in PR2831. Addition in LLVM currently always
|
||||
// has two's complement wrapping guaranteed. However, the semantics for
|
||||
// getelementptr overflow are ambiguous. In the common case though, this
|
||||
// expansion gets used when a GEP in the original code has been converted
|
||||
// into integer arithmetic, in which case the resulting code will be no
|
||||
// more undefined than it was originally.
|
||||
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
|
||||
// comments on expandAddToGEP for details.
|
||||
if (SE.TD)
|
||||
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
|
||||
return expandAddToGEP(S, PTy, Ty, V);
|
||||
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
|
||||
const std::vector<SCEVHandle> &Ops = S->getOperands();
|
||||
return expandAddToGEP(Ops.data(), Ops.data() + Ops.size() - 1,
|
||||
PTy, Ty, V);
|
||||
}
|
||||
|
||||
V = InsertNoopCastOfTo(V, Ty);
|
||||
|
||||
@ -357,6 +408,27 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
|
||||
return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
|
||||
}
|
||||
|
||||
/// Move parts of Base into Rest to leave Base with the minimal
|
||||
/// expression that provides a pointer operand suitable for a
|
||||
/// GEP expansion.
|
||||
static void ExposePointerBase(SCEVHandle &Base, SCEVHandle &Rest,
|
||||
ScalarEvolution &SE) {
|
||||
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
|
||||
Base = A->getStart();
|
||||
Rest = SE.getAddExpr(Rest,
|
||||
SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
|
||||
A->getStepRecurrence(SE),
|
||||
A->getLoop()));
|
||||
}
|
||||
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
|
||||
Base = A->getOperand(A->getNumOperands()-1);
|
||||
std::vector<SCEVHandle> NewAddOps(A->op_begin(), A->op_end());
|
||||
NewAddOps.back() = Rest;
|
||||
Rest = SE.getAddExpr(NewAddOps);
|
||||
ExposePointerBase(Base, Rest, SE);
|
||||
}
|
||||
}
|
||||
|
||||
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
|
||||
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
||||
const Loop *L = S->getLoop();
|
||||
@ -365,8 +437,25 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
|
||||
if (!S->getStart()->isZero()) {
|
||||
std::vector<SCEVHandle> NewOps(S->getOperands());
|
||||
NewOps[0] = SE.getIntegerSCEV(0, Ty);
|
||||
Value *Rest = expand(SE.getAddRecExpr(NewOps, L));
|
||||
return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(Rest)));
|
||||
SCEVHandle Rest = SE.getAddRecExpr(NewOps, L);
|
||||
|
||||
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
|
||||
// comments on expandAddToGEP for details.
|
||||
if (SE.TD) {
|
||||
SCEVHandle Base = S->getStart();
|
||||
SCEVHandle RestArray[1] = Rest;
|
||||
// Dig into the expression to find the pointer base for a GEP.
|
||||
ExposePointerBase(Base, RestArray[0], SE);
|
||||
// If we found a pointer, expand the AddRec with a GEP.
|
||||
if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
|
||||
Value *StartV = expand(Base);
|
||||
assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
|
||||
return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
|
||||
}
|
||||
}
|
||||
|
||||
Value *RestV = expand(Rest);
|
||||
return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(RestV)));
|
||||
}
|
||||
|
||||
// {0,+,1} --> Insert a canonical induction variable into the loop!
|
||||
|
Reference in New Issue
Block a user