Implement sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and

sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformation in Scalar
Evolution.

That helps SLP-vectorizer to recognize consecutive loads/stores.

<rdar://problem/14860614>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209568 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Michael Zolotukhin 2014-05-24 08:09:57 +00:00
parent 6a04ef99f6
commit 45788be6e2
2 changed files with 210 additions and 0 deletions

View File

@ -1201,6 +1201,24 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
return getTruncateOrSignExtend(X, Ty);
}
// sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
if (SA->getNumOperands() == 2) {
auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
if (SMul && SC1) {
if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
APInt C1 = SC1->getValue()->getValue();
APInt C2 = SC2->getValue()->getValue();
APInt CDiff = C2 - C1;
if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
CDiff.isStrictlyPositive() && C2.isPowerOf2())
return getAddExpr(getSignExtendExpr(SC1, Ty),
getSignExtendExpr(SMul, Ty));
}
}
}
}
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can sign extend all of the
// operands (often constants). This allows analysis of something like
@ -1292,6 +1310,23 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
L, AR->getNoWrapFlags());
}
}
// If Start and Step are constants, check if we can apply this
// transformation:
// sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
auto SC1 = dyn_cast<SCEVConstant>(Start);
auto SC2 = dyn_cast<SCEVConstant>(Step);
if (SC1 && SC2) {
APInt C1 = SC1->getValue()->getValue();
APInt C2 = SC2->getValue()->getValue();
APInt CDiff = C2 - C1;
if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
CDiff.isStrictlyPositive() && C2.isPowerOf2()) {
Start = getSignExtendExpr(Start, Ty);
const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
L, AR->getNoWrapFlags());
return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
}
}
}
// The cast wasn't folded; create an explicit cast node.

View File

@ -0,0 +1,175 @@
; RUN: opt < %s -basicaa -slp-vectorizer -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.9.0"
@A = common global [2000 x double] zeroinitializer, align 16
@B = common global [2000 x double] zeroinitializer, align 16
@C = common global [2000 x float] zeroinitializer, align 16
@D = common global [2000 x float] zeroinitializer, align 16
; Currently SCEV isn't smart enough to figure out that accesses
; A[3*i], A[3*i+1] and A[3*i+2] are consecutive, but in future
; that would hopefully be fixed. For now, check that this isn't
; vectorized.
; CHECK-LABEL: foo_3double
; CHECK-NOT: x double>
; Function Attrs: nounwind ssp uwtable
define void @foo_3double(i32 %u) #0 {
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul nsw i32 %u, 3
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom
%0 = load double* %arrayidx, align 8
%arrayidx4 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom
%1 = load double* %arrayidx4, align 8
%add5 = fadd double %0, %1
store double %add5, double* %arrayidx, align 8
%add11 = add nsw i32 %mul, 1
%idxprom12 = sext i32 %add11 to i64
%arrayidx13 = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom12
%2 = load double* %arrayidx13, align 8
%arrayidx17 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom12
%3 = load double* %arrayidx17, align 8
%add18 = fadd double %2, %3
store double %add18, double* %arrayidx13, align 8
%add24 = add nsw i32 %mul, 2
%idxprom25 = sext i32 %add24 to i64
%arrayidx26 = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom25
%4 = load double* %arrayidx26, align 8
%arrayidx30 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom25
%5 = load double* %arrayidx30, align 8
%add31 = fadd double %4, %5
store double %add31, double* %arrayidx26, align 8
ret void
}
; SCEV should be able to tell that accesses A[C1 + C2*i], A[C1 + C2*i], ...
; A[C1 + C2*i] are consecutive, if C2 is a power of 2, and C2 > C1 > 0.
; Thus, the following code should be vectorized.
; CHECK-LABEL: foo_2double
; CHECK: x double>
; Function Attrs: nounwind ssp uwtable
define void @foo_2double(i32 %u) #0 {
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul nsw i32 %u, 2
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom
%0 = load double* %arrayidx, align 8
%arrayidx4 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom
%1 = load double* %arrayidx4, align 8
%add5 = fadd double %0, %1
store double %add5, double* %arrayidx, align 8
%add11 = add nsw i32 %mul, 1
%idxprom12 = sext i32 %add11 to i64
%arrayidx13 = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom12
%2 = load double* %arrayidx13, align 8
%arrayidx17 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom12
%3 = load double* %arrayidx17, align 8
%add18 = fadd double %2, %3
store double %add18, double* %arrayidx13, align 8
ret void
}
; Similar to the previous test, but with different datatype.
; CHECK-LABEL: foo_4float
; CHECK: x float>
; Function Attrs: nounwind ssp uwtable
define void @foo_4float(i32 %u) #0 {
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul nsw i32 %u, 4
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom
%0 = load float* %arrayidx, align 4
%arrayidx4 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom
%1 = load float* %arrayidx4, align 4
%add5 = fadd float %0, %1
store float %add5, float* %arrayidx, align 4
%add11 = add nsw i32 %mul, 1
%idxprom12 = sext i32 %add11 to i64
%arrayidx13 = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom12
%2 = load float* %arrayidx13, align 4
%arrayidx17 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom12
%3 = load float* %arrayidx17, align 4
%add18 = fadd float %2, %3
store float %add18, float* %arrayidx13, align 4
%add24 = add nsw i32 %mul, 2
%idxprom25 = sext i32 %add24 to i64
%arrayidx26 = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom25
%4 = load float* %arrayidx26, align 4
%arrayidx30 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom25
%5 = load float* %arrayidx30, align 4
%add31 = fadd float %4, %5
store float %add31, float* %arrayidx26, align 4
%add37 = add nsw i32 %mul, 3
%idxprom38 = sext i32 %add37 to i64
%arrayidx39 = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom38
%6 = load float* %arrayidx39, align 4
%arrayidx43 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom38
%7 = load float* %arrayidx43, align 4
%add44 = fadd float %6, %7
store float %add44, float* %arrayidx39, align 4
ret void
}
; Similar to the previous tests, but now we are dealing with AddRec SCEV.
; CHECK-LABEL: foo_loop
; CHECK: x double>
; Function Attrs: nounwind ssp uwtable
define i32 @foo_loop(double* %A, i32 %n) #0 {
entry:
%A.addr = alloca double*, align 8
%n.addr = alloca i32, align 4
%sum = alloca double, align 8
%i = alloca i32, align 4
store double* %A, double** %A.addr, align 8
store i32 %n, i32* %n.addr, align 4
store double 0.000000e+00, double* %sum, align 8
store i32 0, i32* %i, align 4
%cmp1 = icmp slt i32 0, %n
br i1 %cmp1, label %for.body.lr.ph, label %for.end
for.body.lr.ph: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ]
%mul = mul nsw i32 %0, 2
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds double* %A, i64 %idxprom
%2 = load double* %arrayidx, align 8
%mul1 = fmul double 7.000000e+00, %2
%add = add nsw i32 %mul, 1
%idxprom3 = sext i32 %add to i64
%arrayidx4 = getelementptr inbounds double* %A, i64 %idxprom3
%3 = load double* %arrayidx4, align 8
%mul5 = fmul double 7.000000e+00, %3
%add6 = fadd double %mul1, %mul5
%add7 = fadd double %1, %add6
store double %add7, double* %sum, align 8
%inc = add nsw i32 %0, 1
store i32 %inc, i32* %i, align 4
%cmp = icmp slt i32 %inc, %n
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
for.cond.for.end_crit_edge: ; preds = %for.body
%split = phi double [ %add7, %for.body ]
br label %for.end
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
%.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ]
%conv = fptosi double %.lcssa to i32
ret i32 %conv
}
attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.ident = !{!0}
!0 = metadata !{metadata !"clang version 3.5.0 "}