Remove trailing whitespace

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21424 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Misha Brukman 2005-04-21 23:13:11 +00:00
parent f976c856fc
commit 4633f1cde8
20 changed files with 384 additions and 384 deletions

View File

@ -1,10 +1,10 @@
//===-- Alpha.h - Top-level interface for Alpha representation --*- C++ -*-===// //===-- Alpha.h - Top-level interface for Alpha representation --*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the entry points for global functions defined in the LLVM // This file contains the entry points for global functions defined in the LLVM

View File

@ -1,10 +1,10 @@
//===-- AlphaAsmPrinter.cpp - Alpha LLVM assembly writer ------------------===// //===-- AlphaAsmPrinter.cpp - Alpha LLVM assembly writer ------------------===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains a printer that converts from our internal representation // This file contains a printer that converts from our internal representation
@ -41,8 +41,8 @@ namespace {
/// Unique incrementer for label values for referencing Global values. /// Unique incrementer for label values for referencing Global values.
/// ///
unsigned LabelNumber; unsigned LabelNumber;
AlphaAsmPrinter(std::ostream &o, TargetMachine &tm) AlphaAsmPrinter(std::ostream &o, TargetMachine &tm)
: AsmPrinter(o, tm), LabelNumber(0) : AsmPrinter(o, tm), LabelNumber(0)
{ {
AlignmentIsInBytes = false; AlignmentIsInBytes = false;
@ -65,7 +65,7 @@ namespace {
void printOperand(const MachineInstr *MI, int opNum, MVT::ValueType VT); void printOperand(const MachineInstr *MI, int opNum, MVT::ValueType VT);
void printBaseOffsetPair (const MachineInstr *MI, int i, bool brackets=true); void printBaseOffsetPair (const MachineInstr *MI, int i, bool brackets=true);
void printMachineInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F); bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M); bool doInitialization(Module &M);
bool doFinalization(Module &M); bool doFinalization(Module &M);
void SwitchSection(std::ostream &OS, const char *NewSection); void SwitchSection(std::ostream &OS, const char *NewSection);
@ -101,7 +101,7 @@ void AlphaAsmPrinter::printOperand(const MachineInstr *MI, int opNum, MVT::Value
void AlphaAsmPrinter::printOp(const MachineOperand &MO, bool IsCallOp) { void AlphaAsmPrinter::printOp(const MachineOperand &MO, bool IsCallOp) {
const MRegisterInfo &RI = *TM.getRegisterInfo(); const MRegisterInfo &RI = *TM.getRegisterInfo();
int new_symbol; int new_symbol;
switch (MO.getType()) { switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) { if (Value *V = MO.getVRegValueOrNull()) {
@ -124,7 +124,7 @@ void AlphaAsmPrinter::printOp(const MachineOperand &MO, bool IsCallOp) {
std::cerr << "Shouldn't use addPCDisp() when building Alpha MachineInstrs"; std::cerr << "Shouldn't use addPCDisp() when building Alpha MachineInstrs";
abort(); abort();
return; return;
case MachineOperand::MO_MachineBasicBlock: { case MachineOperand::MO_MachineBasicBlock: {
MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
O << "LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) O << "LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
@ -149,7 +149,7 @@ void AlphaAsmPrinter::printOp(const MachineOperand &MO, bool IsCallOp) {
else else
O << Mang->getValueName(MO.getGlobal()); O << Mang->getValueName(MO.getGlobal());
return; return;
default: default:
O << "<unknown operand type: " << MO.getType() << ">"; O << "<unknown operand type: " << MO.getType() << ">";
return; return;
@ -163,7 +163,7 @@ void AlphaAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts; ++EmittedInsts;
if (printInstruction(MI)) if (printInstruction(MI))
return; // Printer was automatically generated return; // Printer was automatically generated
assert(0 && "Unhandled instruction in asm writer!"); assert(0 && "Unhandled instruction in asm writer!");
abort(); abort();
return; return;
@ -218,7 +218,7 @@ bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
void AlphaAsmPrinter::printConstantPool(MachineConstantPool *MCP) { void AlphaAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants(); const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData(); const TargetData &TD = TM.getTargetData();
if (CP.empty()) return; if (CP.empty()) return;
SwitchSection(O, "section .rodata"); SwitchSection(O, "section .rodata");
@ -240,12 +240,12 @@ bool AlphaAsmPrinter::doInitialization(Module &M)
O << "\t.arch ev56\n"; O << "\t.arch ev56\n";
return false; return false;
} }
// SwitchSection - Switch to the specified section of the executable if we are // SwitchSection - Switch to the specified section of the executable if we are
// not already in it! // not already in it!
// //
void AlphaAsmPrinter::SwitchSection(std::ostream &OS, const char *NewSection) void AlphaAsmPrinter::SwitchSection(std::ostream &OS, const char *NewSection)
{ {
if (CurSection != NewSection) { if (CurSection != NewSection) {
CurSection = NewSection; CurSection = NewSection;
@ -256,7 +256,7 @@ void AlphaAsmPrinter::SwitchSection(std::ostream &OS, const char *NewSection)
bool AlphaAsmPrinter::doFinalization(Module &M) { bool AlphaAsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData(); const TargetData &TD = TM.getTargetData();
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
if (I->hasInitializer()) { // External global require no code if (I->hasInitializer()) { // External global require no code
O << "\n\n"; O << "\n\n";
@ -265,13 +265,13 @@ bool AlphaAsmPrinter::doFinalization(Module &M) {
unsigned Size = TD.getTypeSize(C->getType()); unsigned Size = TD.getTypeSize(C->getType());
unsigned Align = TD.getTypeAlignmentShift(C->getType()); unsigned Align = TD.getTypeAlignmentShift(C->getType());
if (C->isNullValue() && if (C->isNullValue() &&
(I->hasLinkOnceLinkage() || I->hasInternalLinkage() || (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
I->hasWeakLinkage() /* FIXME: Verify correct */)) { I->hasWeakLinkage() /* FIXME: Verify correct */)) {
SwitchSection(O, "data"); SwitchSection(O, "data");
if (I->hasInternalLinkage()) if (I->hasInternalLinkage())
O << "\t.local " << name << "\n"; O << "\t.local " << name << "\n";
O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
<< "," << (1 << Align); << "," << (1 << Align);
O << "\t\t# "; O << "\t\t# ";

View File

@ -1,10 +1,10 @@
//===- AlphaISelPattern.cpp - A pattern matching inst selector for Alpha --===// //===- AlphaISelPattern.cpp - A pattern matching inst selector for Alpha --===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file defines a pattern matching instruction selector for Alpha. // This file defines a pattern matching instruction selector for Alpha.
@ -33,14 +33,14 @@
using namespace llvm; using namespace llvm;
namespace llvm { namespace llvm {
cl::opt<bool> EnableAlphaIDIV("enable-alpha-intfpdiv", cl::opt<bool> EnableAlphaIDIV("enable-alpha-intfpdiv",
cl::desc("Use the FP div instruction for integer div when possible"), cl::desc("Use the FP div instruction for integer div when possible"),
cl::Hidden); cl::Hidden);
cl::opt<bool> EnableAlphaFTOI("enable-alpha-ftoi", cl::opt<bool> EnableAlphaFTOI("enable-alpha-ftoi",
cl::desc("Enable use of ftoi* and itof* instructions (ev6 and higher)"), cl::desc("Enable use of ftoi* and itof* instructions (ev6 and higher)"),
cl::Hidden); cl::Hidden);
cl::opt<bool> EnableAlphaCount("enable-alpha-count", cl::opt<bool> EnableAlphaCount("enable-alpha-count",
cl::desc("Print estimates on live ins and outs"), cl::desc("Print estimates on live ins and outs"),
cl::Hidden); cl::Hidden);
} }
@ -57,11 +57,11 @@ namespace {
setShiftAmountType(MVT::i64); setShiftAmountType(MVT::i64);
setSetCCResultType(MVT::i64); setSetCCResultType(MVT::i64);
setSetCCResultContents(ZeroOrOneSetCCResult); setSetCCResultContents(ZeroOrOneSetCCResult);
addRegisterClass(MVT::i64, Alpha::GPRCRegisterClass); addRegisterClass(MVT::i64, Alpha::GPRCRegisterClass);
addRegisterClass(MVT::f64, Alpha::FPRCRegisterClass); addRegisterClass(MVT::f64, Alpha::FPRCRegisterClass);
addRegisterClass(MVT::f32, Alpha::FPRCRegisterClass); addRegisterClass(MVT::f32, Alpha::FPRCRegisterClass);
setOperationAction(ISD::BRCONDTWOWAY, MVT::Other, Expand); setOperationAction(ISD::BRCONDTWOWAY, MVT::Other, Expand);
setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote); setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
setOperationAction(ISD::EXTLOAD , MVT::f32 , Promote); setOperationAction(ISD::EXTLOAD , MVT::f32 , Promote);
@ -88,7 +88,7 @@ namespace {
setOperationAction(ISD::SETCC , MVT::f32, Promote); setOperationAction(ISD::SETCC , MVT::f32, Promote);
computeRegisterProperties(); computeRegisterProperties();
addLegalFPImmediate(+0.0); //F31 addLegalFPImmediate(+0.0); //F31
addLegalFPImmediate(-0.0); //-F31 addLegalFPImmediate(-0.0); //-F31
} }
@ -97,16 +97,16 @@ namespace {
/// lower the arguments for the specified function, into the specified DAG. /// lower the arguments for the specified function, into the specified DAG.
virtual std::vector<SDOperand> virtual std::vector<SDOperand>
LowerArguments(Function &F, SelectionDAG &DAG); LowerArguments(Function &F, SelectionDAG &DAG);
/// LowerCallTo - This hook lowers an abstract call to a function into an /// LowerCallTo - This hook lowers an abstract call to a function into an
/// actual call. /// actual call.
virtual std::pair<SDOperand, SDOperand> virtual std::pair<SDOperand, SDOperand>
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand> virtual std::pair<SDOperand, SDOperand>
LowerVAStart(SDOperand Chain, SelectionDAG &DAG); LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
virtual std::pair<SDOperand,SDOperand> virtual std::pair<SDOperand,SDOperand>
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG); const Type *ArgTy, SelectionDAG &DAG);
@ -139,9 +139,9 @@ namespace {
// //#define PV $27 // //#define PV $27
// //#define GP $29 // //#define GP $29
// //#define SP $30 // //#define SP $30
std::vector<SDOperand> std::vector<SDOperand>
AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
{ {
std::vector<SDOperand> ArgValues; std::vector<SDOperand> ArgValues;
std::vector<SDOperand> LS; std::vector<SDOperand> LS;
@ -157,9 +157,9 @@ AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
//Handle the return address //Handle the return address
//BuildMI(&BB, Alpha::IDEF, 0, Alpha::R26); //BuildMI(&BB, Alpha::IDEF, 0, Alpha::R26);
unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18, unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
Alpha::R19, Alpha::R20, Alpha::R21}; Alpha::R19, Alpha::R20, Alpha::R21};
unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18, unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
Alpha::F19, Alpha::F20, Alpha::F21}; Alpha::F19, Alpha::F20, Alpha::F21};
int count = 0; int count = 0;
@ -198,15 +198,15 @@ AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
unsigned Vreg; unsigned Vreg;
MVT::ValueType VT = getValueType(I->getType()); MVT::ValueType VT = getValueType(I->getType());
switch (getValueType(I->getType())) { switch (getValueType(I->getType())) {
default: default:
std::cerr << "Unknown Type " << VT << "\n"; std::cerr << "Unknown Type " << VT << "\n";
abort(); abort();
case MVT::f64: case MVT::f64:
case MVT::f32: case MVT::f32:
Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(VT)); Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(VT));
BuildMI(&BB, Alpha::CPYS, 2, Vreg).addReg(args_float[count]).addReg(args_float[count]); BuildMI(&BB, Alpha::CPYS, 2, Vreg).addReg(args_float[count]).addReg(args_float[count]);
argt = newroot = DAG.getCopyFromReg(Vreg, argt = newroot = DAG.getCopyFromReg(Vreg,
getValueType(I->getType()), getValueType(I->getType()),
Chain); Chain);
break; break;
case MVT::i1: case MVT::i1:
@ -224,11 +224,11 @@ AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
} else { //more args } else { //more args
// Create the frame index object for this incoming parameter... // Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(8, 8 * (count - 6)); int FI = MFI->CreateFixedObject(8, 8 * (count - 6));
// Create the SelectionDAG nodes corresponding to a load // Create the SelectionDAG nodes corresponding to a load
//from this parameter //from this parameter
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
argt = newroot = DAG.getLoad(getValueType(I->getType()), argt = newroot = DAG.getLoad(getValueType(I->getType()),
DAG.getEntryNode(), FIN); DAG.getEntryNode(), FIN);
} }
++count; ++count;
@ -237,7 +237,7 @@ AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
} }
// If the functions takes variable number of arguments, copy all regs to stack // If the functions takes variable number of arguments, copy all regs to stack
if (F.isVarArg()) if (F.isVarArg())
for (int i = 0; i < 6; ++i) for (int i = 0; i < 6; ++i)
{ {
unsigned Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); unsigned Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
@ -246,7 +246,7 @@ AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
int FI = MFI->CreateFixedObject(8, -8 * (6 - i)); int FI = MFI->CreateFixedObject(8, -8 * (6 - i));
SDOperand SDFI = DAG.getFrameIndex(FI, MVT::i64); SDOperand SDFI = DAG.getFrameIndex(FI, MVT::i64);
LS.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, argt, SDFI)); LS.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, argt, SDFI));
Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64)); Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
BuildMI(&BB, Alpha::CPYS, 2, Vreg).addReg(args_float[i]).addReg(args_float[i]); BuildMI(&BB, Alpha::CPYS, 2, Vreg).addReg(args_float[i]).addReg(args_float[i]);
argt = DAG.getCopyFromReg(Vreg, MVT::f64, Chain); argt = DAG.getCopyFromReg(Vreg, MVT::f64, Chain);
@ -317,14 +317,14 @@ AlphaTargetLowering::LowerCallTo(SDOperand Chain,
} }
args_to_use.push_back(Args[i].first); args_to_use.push_back(Args[i].first);
} }
std::vector<MVT::ValueType> RetVals; std::vector<MVT::ValueType> RetVals;
MVT::ValueType RetTyVT = getValueType(RetTy); MVT::ValueType RetTyVT = getValueType(RetTy);
if (RetTyVT != MVT::isVoid) if (RetTyVT != MVT::isVoid)
RetVals.push_back(RetTyVT); RetVals.push_back(RetTyVT);
RetVals.push_back(MVT::Other); RetVals.push_back(MVT::Other);
SDOperand TheCall = SDOperand(DAG.getCall(RetVals, SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
Chain, Callee, args_to_use), 0); Chain, Callee, args_to_use), 0);
Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
@ -343,7 +343,7 @@ LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG) { const Type *ArgTy, SelectionDAG &DAG) {
abort(); abort();
} }
std::pair<SDOperand, SDOperand> AlphaTargetLowering:: std::pair<SDOperand, SDOperand> AlphaTargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
@ -362,11 +362,11 @@ namespace {
/// SelectionDAG operations. /// SelectionDAG operations.
//===--------------------------------------------------------------------===// //===--------------------------------------------------------------------===//
class ISel : public SelectionDAGISel { class ISel : public SelectionDAGISel {
/// AlphaLowering - This object fully describes how to lower LLVM code to an /// AlphaLowering - This object fully describes how to lower LLVM code to an
/// Alpha-specific SelectionDAG. /// Alpha-specific SelectionDAG.
AlphaTargetLowering AlphaLowering; AlphaTargetLowering AlphaLowering;
SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
// for sdiv and udiv until it is put into the future // for sdiv and udiv until it is put into the future
// dag combiner. // dag combiner.
@ -376,18 +376,18 @@ class ISel : public SelectionDAGISel {
/// tree. /// tree.
static const unsigned notIn = (unsigned)(-1); static const unsigned notIn = (unsigned)(-1);
std::map<SDOperand, unsigned> ExprMap; std::map<SDOperand, unsigned> ExprMap;
//CCInvMap sometimes (SetNE) we have the inverse CC code for free //CCInvMap sometimes (SetNE) we have the inverse CC code for free
std::map<SDOperand, unsigned> CCInvMap; std::map<SDOperand, unsigned> CCInvMap;
int count_ins; int count_ins;
int count_outs; int count_outs;
bool has_sym; bool has_sym;
public: public:
ISel(TargetMachine &TM) : SelectionDAGISel(AlphaLowering), AlphaLowering(TM) ISel(TargetMachine &TM) : SelectionDAGISel(AlphaLowering), AlphaLowering(TM)
{} {}
/// InstructionSelectBasicBlock - This callback is invoked by /// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen. /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
@ -403,20 +403,20 @@ public:
if(has_sym) if(has_sym)
++count_ins; ++count_ins;
if(EnableAlphaCount) if(EnableAlphaCount)
std::cerr << "COUNT: " << BB->getParent()->getFunction ()->getName() << " " std::cerr << "COUNT: " << BB->getParent()->getFunction ()->getName() << " "
<< BB->getNumber() << " " << BB->getNumber() << " "
<< count_ins << " " << count_ins << " "
<< count_outs << "\n"; << count_outs << "\n";
// Clear state used for selection. // Clear state used for selection.
ExprMap.clear(); ExprMap.clear();
CCInvMap.clear(); CCInvMap.clear();
} }
unsigned SelectExpr(SDOperand N); unsigned SelectExpr(SDOperand N);
unsigned SelectExprFP(SDOperand N, unsigned Result); unsigned SelectExprFP(SDOperand N, unsigned Result);
void Select(SDOperand N); void Select(SDOperand N);
void SelectAddr(SDOperand N, unsigned& Reg, long& offset); void SelectAddr(SDOperand N, unsigned& Reg, long& offset);
void SelectBranchCC(SDOperand N); void SelectBranchCC(SDOperand N);
void MoveFP2Int(unsigned src, unsigned dst, bool isDouble); void MoveFP2Int(unsigned src, unsigned dst, bool isDouble);
@ -453,7 +453,7 @@ static bool factorize(int v[], int res[], int size, uint64_t c)
//Shamelessly adapted from PPC32 //Shamelessly adapted from PPC32
// Structure used to return the necessary information to codegen an SDIV as // Structure used to return the necessary information to codegen an SDIV as
// a multiply. // a multiply.
struct ms { struct ms {
int64_t m; // magic number int64_t m; // magic number
@ -467,14 +467,14 @@ struct mu {
}; };
/// magic - calculate the magic numbers required to codegen an integer sdiv as /// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
/// or -1. /// or -1.
static struct ms magic(int64_t d) { static struct ms magic(int64_t d) {
int64_t p; int64_t p;
uint64_t ad, anc, delta, q1, r1, q2, r2, t; uint64_t ad, anc, delta, q1, r1, q2, r2, t;
const uint64_t two63 = 9223372036854775808ULL; // 2^63 const uint64_t two63 = 9223372036854775808ULL; // 2^63
struct ms mag; struct ms mag;
ad = abs(d); ad = abs(d);
t = two63 + ((uint64_t)d >> 63); t = two63 + ((uint64_t)d >> 63);
anc = t - 1 - t%ad; // absolute value of nc anc = t - 1 - t%ad; // absolute value of nc
@ -555,7 +555,7 @@ SDOperand ISel::BuildSDIVSequence(SDOperand N) {
int64_t d = (int64_t)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended(); int64_t d = (int64_t)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
ms magics = magic(d); ms magics = magic(d);
// Multiply the numerator (operand 0) by the magic value // Multiply the numerator (operand 0) by the magic value
SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i64, N.getOperand(0), SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i64, N.getOperand(0),
ISelDAG->getConstant(magics.m, MVT::i64)); ISelDAG->getConstant(magics.m, MVT::i64));
// If d > 0 and m < 0, add the numerator // If d > 0 and m < 0, add the numerator
if (d > 0 && magics.m < 0) if (d > 0 && magics.m < 0)
@ -565,10 +565,10 @@ SDOperand ISel::BuildSDIVSequence(SDOperand N) {
Q = ISelDAG->getNode(ISD::SUB, MVT::i64, Q, N.getOperand(0)); Q = ISelDAG->getNode(ISD::SUB, MVT::i64, Q, N.getOperand(0));
// Shift right algebraic if shift value is nonzero // Shift right algebraic if shift value is nonzero
if (magics.s > 0) if (magics.s > 0)
Q = ISelDAG->getNode(ISD::SRA, MVT::i64, Q, Q = ISelDAG->getNode(ISD::SRA, MVT::i64, Q,
ISelDAG->getConstant(magics.s, MVT::i64)); ISelDAG->getConstant(magics.s, MVT::i64));
// Extract the sign bit and add it to the quotient // Extract the sign bit and add it to the quotient
SDOperand T = SDOperand T =
ISelDAG->getNode(ISD::SRL, MVT::i64, Q, ISelDAG->getConstant(63, MVT::i64)); ISelDAG->getNode(ISD::SRL, MVT::i64, Q, ISelDAG->getConstant(63, MVT::i64));
return ISelDAG->getNode(ISD::ADD, MVT::i64, Q, T); return ISelDAG->getNode(ISD::ADD, MVT::i64, Q, T);
} }
@ -578,21 +578,21 @@ SDOperand ISel::BuildSDIVSequence(SDOperand N) {
/// multiplying by a magic number. See: /// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand ISel::BuildUDIVSequence(SDOperand N) { SDOperand ISel::BuildUDIVSequence(SDOperand N) {
unsigned d = unsigned d =
(unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended(); (unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
mu magics = magicu(d); mu magics = magicu(d);
// Multiply the numerator (operand 0) by the magic value // Multiply the numerator (operand 0) by the magic value
SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i64, N.getOperand(0), SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i64, N.getOperand(0),
ISelDAG->getConstant(magics.m, MVT::i64)); ISelDAG->getConstant(magics.m, MVT::i64));
if (magics.a == 0) { if (magics.a == 0) {
Q = ISelDAG->getNode(ISD::SRL, MVT::i64, Q, Q = ISelDAG->getNode(ISD::SRL, MVT::i64, Q,
ISelDAG->getConstant(magics.s, MVT::i64)); ISelDAG->getConstant(magics.s, MVT::i64));
} else { } else {
SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i64, N.getOperand(0), Q); SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i64, N.getOperand(0), Q);
NPQ = ISelDAG->getNode(ISD::SRL, MVT::i64, NPQ, NPQ = ISelDAG->getNode(ISD::SRL, MVT::i64, NPQ,
ISelDAG->getConstant(1, MVT::i64)); ISelDAG->getConstant(1, MVT::i64));
NPQ = ISelDAG->getNode(ISD::ADD, MVT::i64, NPQ, Q); NPQ = ISelDAG->getNode(ISD::ADD, MVT::i64, NPQ, Q);
Q = ISelDAG->getNode(ISD::SRL, MVT::i64, NPQ, Q = ISelDAG->getNode(ISD::SRL, MVT::i64, NPQ,
ISelDAG->getConstant(magics.s-1, MVT::i64)); ISelDAG->getConstant(magics.s-1, MVT::i64));
} }
return Q; return Q;
@ -701,7 +701,7 @@ bool ISel::SelectFPSetCC(SDOperand N, unsigned dst)
//assert(SetCC->getOperand(0).getValueType() != MVT::f32 && "SetCC f32 should have been promoted"); //assert(SetCC->getOperand(0).getValueType() != MVT::f32 && "SetCC f32 should have been promoted");
bool rev = false; bool rev = false;
bool inv = false; bool inv = false;
switch (SetCC->getCondition()) { switch (SetCC->getCondition()) {
default: Node->dump(); assert(0 && "Unknown FP comparison!"); default: Node->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = Alpha::CMPTEQ; break; case ISD::SETEQ: Opc = Alpha::CMPTEQ; break;
@ -711,7 +711,7 @@ bool ISel::SelectFPSetCC(SDOperand N, unsigned dst)
case ISD::SETGE: Opc = Alpha::CMPTLE; rev = true; break; case ISD::SETGE: Opc = Alpha::CMPTLE; rev = true; break;
case ISD::SETNE: Opc = Alpha::CMPTEQ; inv = true; break; case ISD::SETNE: Opc = Alpha::CMPTEQ; inv = true; break;
} }
//FIXME: check for constant 0.0 //FIXME: check for constant 0.0
ConstantFPSDNode *CN; ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(0))) if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(0)))
@ -719,13 +719,13 @@ bool ISel::SelectFPSetCC(SDOperand N, unsigned dst)
Tmp1 = Alpha::F31; Tmp1 = Alpha::F31;
else else
Tmp1 = SelectExpr(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0));
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1))) if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0))) && (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp2 = Alpha::F31; Tmp2 = Alpha::F31;
else else
Tmp2 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(1));
//Can only compare doubles, and dag won't promote for me //Can only compare doubles, and dag won't promote for me
if (SetCC->getOperand(0).getValueType() == MVT::f32) if (SetCC->getOperand(0).getValueType() == MVT::f32)
{ {
@ -743,7 +743,7 @@ bool ISel::SelectFPSetCC(SDOperand N, unsigned dst)
BuildMI(BB, Alpha::CVTST, 1, Tmp3).addReg(Tmp2); BuildMI(BB, Alpha::CVTST, 1, Tmp3).addReg(Tmp2);
Tmp2 = Tmp3; Tmp2 = Tmp3;
} }
if (rev) std::swap(Tmp1, Tmp2); if (rev) std::swap(Tmp1, Tmp2);
//do the comparison //do the comparison
BuildMI(BB, Opc, 2, dst).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, Opc, 2, dst).addReg(Tmp1).addReg(Tmp2);
@ -755,14 +755,14 @@ void ISel::SelectAddr(SDOperand N, unsigned& Reg, long& offset)
{ {
unsigned opcode = N.getOpcode(); unsigned opcode = N.getOpcode();
if (opcode == ISD::ADD) { if (opcode == ISD::ADD) {
if(N.getOperand(1).getOpcode() == ISD::Constant && if(N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 32767) cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 32767)
{ //Normal imm add { //Normal imm add
Reg = SelectExpr(N.getOperand(0)); Reg = SelectExpr(N.getOperand(0));
offset = cast<ConstantSDNode>(N.getOperand(1))->getValue(); offset = cast<ConstantSDNode>(N.getOperand(1))->getValue();
return; return;
} }
else if(N.getOperand(0).getOpcode() == ISD::Constant && else if(N.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0))->getValue() <= 32767) cast<ConstantSDNode>(N.getOperand(0))->getValue() <= 32767)
{ {
Reg = SelectExpr(N.getOperand(1)); Reg = SelectExpr(N.getOperand(1));
@ -778,13 +778,13 @@ void ISel::SelectAddr(SDOperand N, unsigned& Reg, long& offset)
void ISel::SelectBranchCC(SDOperand N) void ISel::SelectBranchCC(SDOperand N)
{ {
assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???"); assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
MachineBasicBlock *Dest = MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
unsigned Opc = Alpha::WTF; unsigned Opc = Alpha::WTF;
Select(N.getOperand(0)); //chain Select(N.getOperand(0)); //chain
SDOperand CC = N.getOperand(1); SDOperand CC = N.getOperand(1);
if (CC.getOpcode() == ISD::SETCC) if (CC.getOpcode() == ISD::SETCC)
{ {
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val); SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
@ -795,12 +795,12 @@ void ISel::SelectBranchCC(SDOperand N)
bool RightZero = SetCC->getOperand(0).getOpcode() == ISD::Constant && bool RightZero = SetCC->getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0; cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0;
bool isNE = false; bool isNE = false;
//Fix up CC //Fix up CC
ISD::CondCode cCode= SetCC->getCondition(); ISD::CondCode cCode= SetCC->getCondition();
if (LeftZero && !RightZero) //Swap Operands if (LeftZero && !RightZero) //Swap Operands
cCode = ISD::getSetCCSwappedOperands(cCode); cCode = ISD::getSetCCSwappedOperands(cCode);
if(cCode == ISD::SETNE) if(cCode == ISD::SETNE)
isNE = true; isNE = true;
@ -929,7 +929,7 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
SDOperand CC = N.getOperand(0); SDOperand CC = N.getOperand(0);
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val); SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
if (CC.getOpcode() == ISD::SETCC && if (CC.getOpcode() == ISD::SETCC &&
!MVT::isInteger(SetCC->getOperand(0).getValueType())) !MVT::isInteger(SetCC->getOperand(0).getValueType()))
{ //FP Setcc -> Select yay! { //FP Setcc -> Select yay!
@ -938,10 +938,10 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
//a = b: c = 0 //a = b: c = 0
//a < b: c < 0 //a < b: c < 0
//a > b: c > 0 //a > b: c > 0
bool invTest = false; bool invTest = false;
unsigned Tmp3; unsigned Tmp3;
ConstantFPSDNode *CN; ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1))) if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0))) && (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
@ -961,7 +961,7 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
BuildMI(BB, isD ? Alpha::SUBT : Alpha::SUBS, 2, Tmp3) BuildMI(BB, isD ? Alpha::SUBT : Alpha::SUBS, 2, Tmp3)
.addReg(Tmp1).addReg(Tmp2); .addReg(Tmp1).addReg(Tmp2);
} }
switch (SetCC->getCondition()) { switch (SetCC->getCondition()) {
default: CC.Val->dump(); assert(0 && "Unknown FP comparison!"); default: CC.Val->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = invTest ? Alpha::FCMOVNE : Alpha::FCMOVEQ; break; case ISD::SETEQ: Opc = invTest ? Alpha::FCMOVNE : Alpha::FCMOVEQ; break;
@ -989,16 +989,16 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
} }
case ISD::FP_ROUND: case ISD::FP_ROUND:
assert (DestType == MVT::f32 && assert (DestType == MVT::f32 &&
N.getOperand(0).getValueType() == MVT::f64 && N.getOperand(0).getValueType() == MVT::f64 &&
"only f64 to f32 conversion supported here"); "only f64 to f32 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTTS, 1, Result).addReg(Tmp1); BuildMI(BB, Alpha::CVTTS, 1, Result).addReg(Tmp1);
return Result; return Result;
case ISD::FP_EXTEND: case ISD::FP_EXTEND:
assert (DestType == MVT::f64 && assert (DestType == MVT::f64 &&
N.getOperand(0).getValueType() == MVT::f32 && N.getOperand(0).getValueType() == MVT::f32 &&
"only f32 to f64 conversion supported here"); "only f32 to f64 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTST, 1, Result).addReg(Tmp1); BuildMI(BB, Alpha::CVTST, 1, Result).addReg(Tmp1);
@ -1011,16 +1011,16 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
ExprMap[N.getValue(1)] = notIn; // Generate the token ExprMap[N.getValue(1)] = notIn; // Generate the token
else else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
Select(Chain); Select(Chain);
unsigned r = dyn_cast<RegSDNode>(Node)->getReg(); unsigned r = dyn_cast<RegSDNode>(Node)->getReg();
//std::cerr << "CopyFromReg " << Result << " = " << r << "\n"; //std::cerr << "CopyFromReg " << Result << " = " << r << "\n";
BuildMI(BB, Alpha::CPYS, 2, Result).addReg(r).addReg(r); BuildMI(BB, Alpha::CPYS, 2, Result).addReg(r).addReg(r);
return Result; return Result;
} }
case ISD::LOAD: case ISD::LOAD:
{ {
// Make sure we generate both values. // Make sure we generate both values.
@ -1070,7 +1070,7 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
} }
} }
return Result; return Result;
case ISD::SDIV: case ISD::SDIV:
case ISD::MUL: case ISD::MUL:
case ISD::ADD: case ISD::ADD:
@ -1083,7 +1083,7 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
}; };
ConstantFPSDNode *CN; ConstantFPSDNode *CN;
if (opcode == ISD::SUB if (opcode == ISD::SUB
&& (CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) && (CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0))) && (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
{ {
@ -1103,24 +1103,24 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
ExprMap[N.getValue(1)] = notIn; // Generate the token ExprMap[N.getValue(1)] = notIn; // Generate the token
else else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
Tmp1 = MakeReg(MVT::f32); Tmp1 = MakeReg(MVT::f32);
assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::f32 && assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::f32 &&
"EXTLOAD not from f32"); "EXTLOAD not from f32");
assert(Node->getValueType(0) == MVT::f64 && "EXTLOAD not to f64"); assert(Node->getValueType(0) == MVT::f64 && "EXTLOAD not to f64");
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1); SDOperand Address = N.getOperand(1);
Select(Chain); Select(Chain);
if (Address.getOpcode() == ISD::GlobalAddress) { if (Address.getOpcode() == ISD::GlobalAddress) {
AlphaLowering.restoreGP(BB); AlphaLowering.restoreGP(BB);
has_sym = true; has_sym = true;
BuildMI(BB, Alpha::LDS_SYM, 1, Tmp1).addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal()); BuildMI(BB, Alpha::LDS_SYM, 1, Tmp1).addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
} }
else if (ConstantPoolSDNode *CP = else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(N.getOperand(1))) dyn_cast<ConstantPoolSDNode>(N.getOperand(1)))
{ {
AlphaLowering.restoreGP(BB); AlphaLowering.restoreGP(BB);
has_sym = true; has_sym = true;
@ -1143,7 +1143,7 @@ unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
case ISD::UINT_TO_FP: case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: case ISD::SINT_TO_FP:
{ {
assert (N.getOperand(0).getValueType() == MVT::i64 assert (N.getOperand(0).getValueType() == MVT::i64
&& "only quads can be loaded from"); && "only quads can be loaded from");
Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
Tmp2 = MakeReg(MVT::f64); Tmp2 = MakeReg(MVT::f64);
@ -1188,9 +1188,9 @@ unsigned ISel::SelectExpr(SDOperand N) {
if (DestType == MVT::f64 || DestType == MVT::f32 || if (DestType == MVT::f64 || DestType == MVT::f32 ||
( (
(opcode == ISD::LOAD || opcode == ISD::CopyFromReg || (opcode == ISD::LOAD || opcode == ISD::CopyFromReg ||
opcode == ISD::EXTLOAD) && opcode == ISD::EXTLOAD) &&
(N.getValue(0).getValueType() == MVT::f32 || (N.getValue(0).getValueType() == MVT::f32 ||
N.getValue(0).getValueType() == MVT::f64) N.getValue(0).getValueType() == MVT::f64)
) )
) )
@ -1200,7 +1200,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
default: default:
Node->dump(); Node->dump();
assert(0 && "Node not handled!\n"); assert(0 && "Node not handled!\n");
case ISD::MULHU: case ISD::MULHU:
Tmp1 = SelectExpr(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(1));
@ -1226,7 +1226,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
BuildMI(BB, Alpha::IDEF, 0, Result); BuildMI(BB, Alpha::IDEF, 0, Result);
return Result; return Result;
} }
case ISD::DYNAMIC_STACKALLOC: case ISD::DYNAMIC_STACKALLOC:
// Generate both result values. // Generate both result values.
if (Result != notIn) if (Result != notIn)
@ -1244,7 +1244,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
<< " the stack alignment yet!"; << " the stack alignment yet!";
abort(); abort();
} }
Select(N.getOperand(0)); Select(N.getOperand(0));
if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
{ {
@ -1279,35 +1279,35 @@ unsigned ISel::SelectExpr(SDOperand N) {
.addFrameIndex(cast<FrameIndexSDNode>(N)->getIndex()) .addFrameIndex(cast<FrameIndexSDNode>(N)->getIndex())
.addReg(Alpha::F31); .addReg(Alpha::F31);
return Result; return Result;
case ISD::EXTLOAD: case ISD::EXTLOAD:
case ISD::ZEXTLOAD: case ISD::ZEXTLOAD:
case ISD::SEXTLOAD: case ISD::SEXTLOAD:
case ISD::LOAD: case ISD::LOAD:
{ {
// Make sure we generate both values. // Make sure we generate both values.
if (Result != notIn) if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token ExprMap[N.getValue(1)] = notIn; // Generate the token
else else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1); SDOperand Address = N.getOperand(1);
Select(Chain); Select(Chain);
assert(Node->getValueType(0) == MVT::i64 && assert(Node->getValueType(0) == MVT::i64 &&
"Unknown type to sign extend to."); "Unknown type to sign extend to.");
if (opcode == ISD::LOAD) if (opcode == ISD::LOAD)
Opc = Alpha::LDQ; Opc = Alpha::LDQ;
else else
switch (cast<MVTSDNode>(Node)->getExtraValueType()) { switch (cast<MVTSDNode>(Node)->getExtraValueType()) {
default: Node->dump(); assert(0 && "Bad sign extend!"); default: Node->dump(); assert(0 && "Bad sign extend!");
case MVT::i32: Opc = Alpha::LDL; case MVT::i32: Opc = Alpha::LDL;
assert(opcode != ISD::ZEXTLOAD && "Not sext"); break; assert(opcode != ISD::ZEXTLOAD && "Not sext"); break;
case MVT::i16: Opc = Alpha::LDWU; case MVT::i16: Opc = Alpha::LDWU;
assert(opcode != ISD::SEXTLOAD && "Not zext"); break; assert(opcode != ISD::SEXTLOAD && "Not zext"); break;
case MVT::i1: //FIXME: Treat i1 as i8 since there are problems otherwise case MVT::i1: //FIXME: Treat i1 as i8 since there are problems otherwise
case MVT::i8: Opc = Alpha::LDBU; case MVT::i8: Opc = Alpha::LDBU;
assert(opcode != ISD::SEXTLOAD && "Not zext"); break; assert(opcode != ISD::SEXTLOAD && "Not zext"); break;
} }
@ -1345,28 +1345,28 @@ unsigned ISel::SelectExpr(SDOperand N) {
case ISD::CALL: case ISD::CALL:
{ {
Select(N.getOperand(0)); Select(N.getOperand(0));
// The chain for this call is now lowered. // The chain for this call is now lowered.
ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), notIn)); ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), notIn));
//grab the arguments //grab the arguments
std::vector<unsigned> argvregs; std::vector<unsigned> argvregs;
//assert(Node->getNumOperands() < 8 && "Only 6 args supported"); //assert(Node->getNumOperands() < 8 && "Only 6 args supported");
for(int i = 2, e = Node->getNumOperands(); i < e; ++i) for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
argvregs.push_back(SelectExpr(N.getOperand(i))); argvregs.push_back(SelectExpr(N.getOperand(i)));
//in reg args //in reg args
for(int i = 0, e = std::min(6, (int)argvregs.size()); i < e; ++i) for(int i = 0, e = std::min(6, (int)argvregs.size()); i < e; ++i)
{ {
unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18, unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
Alpha::R19, Alpha::R20, Alpha::R21}; Alpha::R19, Alpha::R20, Alpha::R21};
unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18, unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
Alpha::F19, Alpha::F20, Alpha::F21}; Alpha::F19, Alpha::F20, Alpha::F21};
switch(N.getOperand(i+2).getValueType()) { switch(N.getOperand(i+2).getValueType()) {
default: default:
Node->dump(); Node->dump();
N.getOperand(i).Val->dump(); N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " << std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n"; N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call"); assert(0 && "Unknown value type for call");
case MVT::i1: case MVT::i1:
@ -1386,10 +1386,10 @@ unsigned ISel::SelectExpr(SDOperand N) {
for (int i = 6, e = argvregs.size(); i < e; ++i) for (int i = 6, e = argvregs.size(); i < e; ++i)
{ {
switch(N.getOperand(i+2).getValueType()) { switch(N.getOperand(i+2).getValueType()) {
default: default:
Node->dump(); Node->dump();
N.getOperand(i).Val->dump(); N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " << std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n"; N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call"); assert(0 && "Unknown value type for call");
case MVT::i1: case MVT::i1:
@ -1409,7 +1409,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
} }
//build the right kind of call //build the right kind of call
if (GlobalAddressSDNode *GASD = if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
{ {
if (GASD->getGlobal()->isExternal()) { if (GASD->getGlobal()->isExternal()) {
//use safe calling convention //use safe calling convention
@ -1421,9 +1421,9 @@ unsigned ISel::SelectExpr(SDOperand N) {
AlphaLowering.restoreGP(BB); AlphaLowering.restoreGP(BB);
BuildMI(BB, Alpha::BSR, 1, Alpha::R26).addGlobalAddress(GASD->getGlobal(),true); BuildMI(BB, Alpha::BSR, 1, Alpha::R26).addGlobalAddress(GASD->getGlobal(),true);
} }
} }
else if (ExternalSymbolSDNode *ESSDN = else if (ExternalSymbolSDNode *ESSDN =
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
{ {
AlphaLowering.restoreGP(BB); AlphaLowering.restoreGP(BB);
has_sym = true; has_sym = true;
@ -1434,9 +1434,9 @@ unsigned ISel::SelectExpr(SDOperand N) {
BuildMI(BB, Alpha::BIS, 2, Alpha::R27).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, Alpha::BIS, 2, Alpha::R27).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, Alpha::JSR, 2, Alpha::R26).addReg(Alpha::R27).addImm(0); BuildMI(BB, Alpha::JSR, 2, Alpha::R26).addReg(Alpha::R27).addImm(0);
} }
//push the result into a virtual register //push the result into a virtual register
switch (Node->getValueType(0)) { switch (Node->getValueType(0)) {
default: Node->dump(); assert(0 && "Unknown value type for call result!"); default: Node->dump(); assert(0 && "Unknown value type for call result!");
case MVT::Other: return notIn; case MVT::Other: return notIn;
@ -1453,8 +1453,8 @@ unsigned ISel::SelectExpr(SDOperand N) {
break; break;
} }
return Result+N.ResNo; return Result+N.ResNo;
} }
case ISD::SIGN_EXTEND_INREG: case ISD::SIGN_EXTEND_INREG:
{ {
//do SDIV opt for all levels of ints if not dividing by a constant //do SDIV opt for all levels of ints if not dividing by a constant
@ -1479,7 +1479,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
MoveFP2Int(Tmp9, Result, true); MoveFP2Int(Tmp9, Result, true);
return Result; return Result;
} }
//Alpha has instructions for a bunch of signed 32 bit stuff //Alpha has instructions for a bunch of signed 32 bit stuff
if( dyn_cast<MVTSDNode>(Node)->getExtraValueType() == MVT::i32) if( dyn_cast<MVTSDNode>(Node)->getExtraValueType() == MVT::i32)
{ {
@ -1559,7 +1559,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
} }
return Result; return Result;
} }
case ISD::SETCC: case ISD::SETCC:
{ {
if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) { if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
@ -1567,7 +1567,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
bool isConst1 = false; bool isConst1 = false;
bool isConst2 = false; bool isConst2 = false;
int dir; int dir;
//Tmp1 = SelectExpr(N.getOperand(0)); //Tmp1 = SelectExpr(N.getOperand(0));
if(N.getOperand(0).getOpcode() == ISD::Constant && if(N.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0))->getValue() <= 255) cast<ConstantSDNode>(N.getOperand(0))->getValue() <= 255)
@ -1579,21 +1579,21 @@ unsigned ISel::SelectExpr(SDOperand N) {
switch (SetCC->getCondition()) { switch (SetCC->getCondition()) {
default: Node->dump(); assert(0 && "Unknown integer comparison!"); default: Node->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ: Opc = Alpha::CMPEQ; dir=0; break; case ISD::SETEQ: Opc = Alpha::CMPEQ; dir=0; break;
case ISD::SETLT: case ISD::SETLT:
Opc = isConst2 ? Alpha::CMPLTi : Alpha::CMPLT; dir = 1; break; Opc = isConst2 ? Alpha::CMPLTi : Alpha::CMPLT; dir = 1; break;
case ISD::SETLE: case ISD::SETLE:
Opc = isConst2 ? Alpha::CMPLEi : Alpha::CMPLE; dir = 1; break; Opc = isConst2 ? Alpha::CMPLEi : Alpha::CMPLE; dir = 1; break;
case ISD::SETGT: case ISD::SETGT:
Opc = isConst1 ? Alpha::CMPLTi : Alpha::CMPLT; dir = 2; break; Opc = isConst1 ? Alpha::CMPLTi : Alpha::CMPLT; dir = 2; break;
case ISD::SETGE: case ISD::SETGE:
Opc = isConst1 ? Alpha::CMPLEi : Alpha::CMPLE; dir = 2; break; Opc = isConst1 ? Alpha::CMPLEi : Alpha::CMPLE; dir = 2; break;
case ISD::SETULT: case ISD::SETULT:
Opc = isConst2 ? Alpha::CMPULTi : Alpha::CMPULT; dir = 1; break; Opc = isConst2 ? Alpha::CMPULTi : Alpha::CMPULT; dir = 1; break;
case ISD::SETUGT: case ISD::SETUGT:
Opc = isConst1 ? Alpha::CMPULTi : Alpha::CMPULT; dir = 2; break; Opc = isConst1 ? Alpha::CMPULTi : Alpha::CMPULT; dir = 2; break;
case ISD::SETULE: case ISD::SETULE:
Opc = isConst2 ? Alpha::CMPULEi : Alpha::CMPULE; dir = 1; break; Opc = isConst2 ? Alpha::CMPULEi : Alpha::CMPULE; dir = 1; break;
case ISD::SETUGE: case ISD::SETUGE:
Opc = isConst1 ? Alpha::CMPULEi : Alpha::CMPULE; dir = 2; break; Opc = isConst1 ? Alpha::CMPULEi : Alpha::CMPULE; dir = 2; break;
case ISD::SETNE: {//Handle this one special case ISD::SETNE: {//Handle this one special
//std::cerr << "Alpha does not have a setne.\n"; //std::cerr << "Alpha does not have a setne.\n";
@ -1656,7 +1656,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
} }
return Result; return Result;
} }
case ISD::CopyFromReg: case ISD::CopyFromReg:
{ {
++count_ins; ++count_ins;
@ -1666,7 +1666,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
ExprMap[N.getValue(1)] = notIn; // Generate the token ExprMap[N.getValue(1)] = notIn; // Generate the token
else else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
Select(Chain); Select(Chain);
@ -1676,7 +1676,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
return Result; return Result;
} }
//Most of the plain arithmetic and logic share the same form, and the same //Most of the plain arithmetic and logic share the same form, and the same
//constant immediate test //constant immediate test
case ISD::XOR: case ISD::XOR:
//Match Not //Match Not
@ -1711,7 +1711,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
} }
case ISD::OR: case ISD::OR:
//Check operand(0) == Not //Check operand(0) == Not
if (N.getOperand(0).getOpcode() == ISD::XOR && if (N.getOperand(0).getOpcode() == ISD::XOR &&
N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant && N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->getSignExtended() == -1) cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->getSignExtended() == -1)
{ {
@ -1726,7 +1726,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
return Result; return Result;
} }
//Check operand(1) == Not //Check operand(1) == Not
if (N.getOperand(1).getOpcode() == ISD::XOR && if (N.getOperand(1).getOpcode() == ISD::XOR &&
N.getOperand(1).getOperand(1).getOpcode() == ISD::Constant && N.getOperand(1).getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getSignExtended() == -1) cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getSignExtended() == -1)
{ {
@ -1776,7 +1776,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
} }
return Result; return Result;
case ISD::ADD: case ISD::ADD:
case ISD::SUB: case ISD::SUB:
{ {
@ -1889,7 +1889,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
// If this is a divide by constant, we can emit code using some magic // If this is a divide by constant, we can emit code using some magic
// constants to implement it as a multiply instead. // constants to implement it as a multiply instead.
ExprMap.erase(N); ExprMap.erase(N);
if (opcode == ISD::SDIV) if (opcode == ISD::SDIV)
return SelectExpr(BuildSDIVSequence(N)); return SelectExpr(BuildSDIVSequence(N));
else else
return SelectExpr(BuildUDIVSequence(N)); return SelectExpr(BuildUDIVSequence(N));
@ -1898,7 +1898,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
//else fall though //else fall though
case ISD::UREM: case ISD::UREM:
case ISD::SREM: case ISD::SREM:
//FIXME: alpha really doesn't support any of these operations, //FIXME: alpha really doesn't support any of these operations,
// the ops are expanded into special library calls with // the ops are expanded into special library calls with
// special calling conventions // special calling conventions
//Restore GP because it is a call after all... //Restore GP because it is a call after all...
@ -1912,10 +1912,10 @@ unsigned ISel::SelectExpr(SDOperand N) {
Tmp2 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(1));
//set up regs explicitly (helps Reg alloc) //set up regs explicitly (helps Reg alloc)
BuildMI(BB, Alpha::BIS, 2, Alpha::R24).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, Alpha::BIS, 2, Alpha::R24).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, Alpha::BIS, 2, Alpha::R25).addReg(Tmp2).addReg(Tmp2); BuildMI(BB, Alpha::BIS, 2, Alpha::R25).addReg(Tmp2).addReg(Tmp2);
AlphaLowering.restoreGP(BB); AlphaLowering.restoreGP(BB);
BuildMI(BB, Opc, 2).addReg(Alpha::R24).addReg(Alpha::R25); BuildMI(BB, Opc, 2).addReg(Alpha::R24).addReg(Alpha::R25);
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R27).addReg(Alpha::R27); BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R27).addReg(Alpha::R27);
return Result; return Result;
case ISD::FP_TO_UINT: case ISD::FP_TO_UINT:
@ -1934,7 +1934,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
Tmp2 = MakeReg(MVT::f64); Tmp2 = MakeReg(MVT::f64);
BuildMI(BB, Alpha::CVTTQ, 1, Tmp2).addReg(Tmp1); BuildMI(BB, Alpha::CVTTQ, 1, Tmp2).addReg(Tmp1);
MoveFP2Int(Tmp2, Result, true); MoveFP2Int(Tmp2, Result, true);
return Result; return Result;
} }
@ -1950,7 +1950,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
SDOperand CC = N.getOperand(0); SDOperand CC = N.getOperand(0);
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val); SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
if (CC.getOpcode() == ISD::SETCC && if (CC.getOpcode() == ISD::SETCC &&
!MVT::isInteger(SetCC->getOperand(0).getValueType())) !MVT::isInteger(SetCC->getOperand(0).getValueType()))
{ //FP Setcc -> Int Select { //FP Setcc -> Int Select
Tmp1 = MakeReg(MVT::f64); Tmp1 = MakeReg(MVT::f64);
@ -1986,7 +1986,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
cCode = ISD::getSetCCInverse(cCode, true); cCode = ISD::getSetCCInverse(cCode, true);
if (LeftZero && !RightZero) //Swap Operands if (LeftZero && !RightZero) //Swap Operands
cCode = ISD::getSetCCSwappedOperands(cCode); cCode = ISD::getSetCCSwappedOperands(cCode);
//Choose the CMOV //Choose the CMOV
switch (cCode) { switch (cCode) {
default: CC.Val->dump(); assert(0 && "Unknown integer comparison!"); default: CC.Val->dump(); assert(0 && "Unknown integer comparison!");
@ -2029,7 +2029,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp3).addReg(Tmp1); BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp3).addReg(Tmp1);
return Result; return Result;
} }
@ -2067,7 +2067,7 @@ void ISel::Select(SDOperand N) {
return; // Already selected. return; // Already selected.
SDNode *Node = N.Val; SDNode *Node = N.Val;
switch (opcode) { switch (opcode) {
default: default:
@ -2093,16 +2093,16 @@ void ISel::Select(SDOperand N) {
Select(N.getOperand(0)); Select(N.getOperand(0));
BuildMI(BB, Alpha::IDEF, 0, cast<RegSDNode>(N)->getReg()); BuildMI(BB, Alpha::IDEF, 0, cast<RegSDNode>(N)->getReg());
return; return;
case ISD::EntryToken: return; // Noop case ISD::EntryToken: return; // Noop
case ISD::TokenFactor: case ISD::TokenFactor:
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i)); Select(Node->getOperand(i));
//N.Val->dump(); std::cerr << "\n"; //N.Val->dump(); std::cerr << "\n";
//assert(0 && "Node not handled yet!"); //assert(0 && "Node not handled yet!");
return; return;
case ISD::CopyToReg: case ISD::CopyToReg:
@ -2110,9 +2110,9 @@ void ISel::Select(SDOperand N) {
Select(N.getOperand(0)); Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = cast<RegSDNode>(N)->getReg(); Tmp2 = cast<RegSDNode>(N)->getReg();
if (Tmp1 != Tmp2) { if (Tmp1 != Tmp2) {
if (N.getOperand(1).getValueType() == MVT::f64 || if (N.getOperand(1).getValueType() == MVT::f64 ||
N.getOperand(1).getValueType() == MVT::f32) N.getOperand(1).getValueType() == MVT::f32)
BuildMI(BB, Alpha::CPYS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, Alpha::CPYS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
else else
@ -2133,7 +2133,7 @@ void ISel::Select(SDOperand N) {
Select(N.getOperand(0)); Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(1));
switch (N.getOperand(1).getValueType()) { switch (N.getOperand(1).getValueType()) {
default: Node->dump(); default: Node->dump();
assert(0 && "All other types should have been promoted!!"); assert(0 && "All other types should have been promoted!!");
case MVT::f64: case MVT::f64:
case MVT::f32: case MVT::f32:
@ -2154,8 +2154,8 @@ void ISel::Select(SDOperand N) {
BuildMI(BB, Alpha::RETURN, 0); // Just emit a 'ret' instruction BuildMI(BB, Alpha::RETURN, 0); // Just emit a 'ret' instruction
return; return;
case ISD::TRUNCSTORE: case ISD::TRUNCSTORE:
case ISD::STORE: case ISD::STORE:
{ {
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
SDOperand Value = N.getOperand(1); SDOperand Value = N.getOperand(1);
@ -2218,7 +2218,7 @@ void ISel::Select(SDOperand N) {
case ISD::ADJCALLSTACKUP: case ISD::ADJCALLSTACKUP:
Select(N.getOperand(0)); Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? Alpha::ADJUSTSTACKDOWN : Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? Alpha::ADJUSTSTACKDOWN :
Alpha::ADJUSTSTACKUP; Alpha::ADJUSTSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1); BuildMI(BB, Opc, 1).addImm(Tmp1);
@ -2238,6 +2238,6 @@ void ISel::Select(SDOperand N) {
/// description file. /// description file.
/// ///
FunctionPass *llvm::createAlphaPatternInstructionSelector(TargetMachine &TM) { FunctionPass *llvm::createAlphaPatternInstructionSelector(TargetMachine &TM) {
return new ISel(TM); return new ISel(TM);
} }

View File

@ -1,10 +1,10 @@
//===- AlphaInstrInfo.cpp - Alpha Instruction Information -------*- C++ -*-===// //===- AlphaInstrInfo.cpp - Alpha Instruction Information -------*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the Alpha implementation of the TargetInstrInfo class. // This file contains the Alpha implementation of the TargetInstrInfo class.

View File

@ -1,10 +1,10 @@
//===- AlphaInstrInfo.h - Alpha Instruction Information ---------*- C++ -*-===// //===- AlphaInstrInfo.h - Alpha Instruction Information ---------*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the Alpha implementation of the TargetInstrInfo class. // This file contains the Alpha implementation of the TargetInstrInfo class.

View File

@ -1,10 +1,10 @@
//===- AlphaRegisterInfo.cpp - Alpha Register Information -------*- C++ -*-===// //===- AlphaRegisterInfo.cpp - Alpha Register Information -------*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the Alpha implementation of the MRegisterInfo class. // This file contains the Alpha implementation of the MRegisterInfo class.
@ -62,7 +62,7 @@ static const TargetRegisterClass *getClass(unsigned SrcReg) {
return Alpha::GPRCRegisterClass; return Alpha::GPRCRegisterClass;
} }
void void
AlphaRegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, AlphaRegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, MachineBasicBlock::iterator MI,
unsigned SrcReg, int FrameIdx) const { unsigned SrcReg, int FrameIdx) const {
@ -98,7 +98,7 @@ void AlphaRegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
BuildMI(MBB, MI, Alpha::BIS, 2, DestReg).addReg(SrcReg).addReg(SrcReg); BuildMI(MBB, MI, Alpha::BIS, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
} else if (RC == Alpha::FPRCRegisterClass) { } else if (RC == Alpha::FPRCRegisterClass) {
BuildMI(MBB, MI, Alpha::CPYS, 2, DestReg).addReg(SrcReg).addReg(SrcReg); BuildMI(MBB, MI, Alpha::CPYS, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
} else { } else {
std::cerr << "Attempt to copy register that is not GPR or FPR"; std::cerr << "Attempt to copy register that is not GPR or FPR";
abort(); abort();
} }
@ -142,7 +142,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
New=BuildMI(Alpha::LDA, 2, Alpha::R30) New=BuildMI(Alpha::LDA, 2, Alpha::R30)
.addImm(Amount).addReg(Alpha::R30); .addImm(Amount).addReg(Alpha::R30);
} }
// Replace the pseudo instruction with a new instruction... // Replace the pseudo instruction with a new instruction...
MBB.insert(I, New); MBB.insert(I, New);
} }
@ -152,7 +152,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
} }
//Alpha has a slightly funny stack: //Alpha has a slightly funny stack:
//Args //Args
//<- incoming SP //<- incoming SP
//fixed locals (and spills, callee saved, etc) //fixed locals (and spills, callee saved, etc)
//<- FP //<- FP
@ -176,15 +176,15 @@ AlphaRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const {
// Add the base register of R30 (SP) or R15 (FP). // Add the base register of R30 (SP) or R15 (FP).
MI.SetMachineOperandReg(i + 1, FP ? Alpha::R15 : Alpha::R30); MI.SetMachineOperandReg(i + 1, FP ? Alpha::R15 : Alpha::R30);
// Now add the frame object offset to the offset from the virtual frame index. // Now add the frame object offset to the offset from the virtual frame index.
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex); int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
DEBUG(std::cerr << "FI: " << FrameIndex << " Offset: " << Offset << "\n"); DEBUG(std::cerr << "FI: " << FrameIndex << " Offset: " << Offset << "\n");
Offset += MF.getFrameInfo()->getStackSize(); Offset += MF.getFrameInfo()->getStackSize();
DEBUG(std::cerr << "Corrected Offset " << Offset << DEBUG(std::cerr << "Corrected Offset " << Offset <<
" for stack size: " << MF.getFrameInfo()->getStackSize() << "\n"); " for stack size: " << MF.getFrameInfo()->getStackSize() << "\n");
if (Offset > IMM_HIGH || Offset < IMM_LOW) { if (Offset > IMM_HIGH || Offset < IMM_LOW) {
@ -192,7 +192,7 @@ AlphaRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const {
//inst off the SP/FP //inst off the SP/FP
//fix up the old: //fix up the old:
MI.SetMachineOperandReg(i + 1, Alpha::R28); MI.SetMachineOperandReg(i + 1, Alpha::R28);
MI.SetMachineOperandConst(i, MachineOperand::MO_SignExtendedImmed, MI.SetMachineOperandConst(i, MachineOperand::MO_SignExtendedImmed,
getLower16(Offset)); getLower16(Offset));
//insert the new //insert the new
MachineInstr* nMI=BuildMI(Alpha::LDAH, 2, Alpha::R28) MachineInstr* nMI=BuildMI(Alpha::LDAH, 2, Alpha::R28)
@ -210,24 +210,24 @@ void AlphaRegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineFrameInfo *MFI = MF.getFrameInfo(); MachineFrameInfo *MFI = MF.getFrameInfo();
MachineInstr *MI; MachineInstr *MI;
bool FP = hasFP(MF); bool FP = hasFP(MF);
//handle GOP offset //handle GOP offset
MI = BuildMI(Alpha::LDGP, 0); MI = BuildMI(Alpha::LDGP, 0);
MBB.insert(MBBI, MI); MBB.insert(MBBI, MI);
//evil const_cast until MO stuff setup to handle const //evil const_cast until MO stuff setup to handle const
MI = BuildMI(Alpha::ALTENT, 1).addGlobalAddress(const_cast<Function*>(MF.getFunction()), true); MI = BuildMI(Alpha::ALTENT, 1).addGlobalAddress(const_cast<Function*>(MF.getFunction()), true);
MBB.insert(MBBI, MI); MBB.insert(MBBI, MI);
// Get the number of bytes to allocate from the FrameInfo // Get the number of bytes to allocate from the FrameInfo
long NumBytes = MFI->getStackSize(); long NumBytes = MFI->getStackSize();
if (MFI->hasCalls() && !FP) { if (MFI->hasCalls() && !FP) {
// We reserve argument space for call sites in the function immediately on // We reserve argument space for call sites in the function immediately on
// entry to the current function. This eliminates the need for add/sub // entry to the current function. This eliminates the need for add/sub
// brackets around call sites. // brackets around call sites.
//If there is a frame pointer, then we don't do this //If there is a frame pointer, then we don't do this
NumBytes += MFI->getMaxCallFrameSize(); NumBytes += MFI->getMaxCallFrameSize();
DEBUG(std::cerr << "Added " << MFI->getMaxCallFrameSize() DEBUG(std::cerr << "Added " << MFI->getMaxCallFrameSize()
<< " to the stack due to calls\n"); << " to the stack due to calls\n");
} }
@ -274,9 +274,9 @@ void AlphaRegisterInfo::emitEpilogue(MachineFunction &MF,
MachineInstr *MI; MachineInstr *MI;
assert((MBBI->getOpcode() == Alpha::RET || MBBI->getOpcode() == Alpha::RETURN) && assert((MBBI->getOpcode() == Alpha::RET || MBBI->getOpcode() == Alpha::RETURN) &&
"Can only insert epilog into returning blocks"); "Can only insert epilog into returning blocks");
bool FP = hasFP(MF); bool FP = hasFP(MF);
// Get the number of bytes allocated from the FrameInfo... // Get the number of bytes allocated from the FrameInfo...
long NumBytes = MFI->getStackSize(); long NumBytes = MFI->getStackSize();
@ -291,7 +291,7 @@ void AlphaRegisterInfo::emitEpilogue(MachineFunction &MF,
MBB.insert(MBBI, MI); MBB.insert(MBBI, MI);
} }
if (NumBytes != 0) if (NumBytes != 0)
{ {
if (NumBytes <= IMM_HIGH) { if (NumBytes <= IMM_HIGH) {
MI=BuildMI(Alpha::LDA, 2, Alpha::R30).addImm(NumBytes).addReg(Alpha::R30); MI=BuildMI(Alpha::LDA, 2, Alpha::R30).addImm(NumBytes).addReg(Alpha::R30);
@ -324,7 +324,7 @@ AlphaRegisterInfo::getRegClassForType(const Type* Ty) const {
case Type::PointerTyID: case Type::PointerTyID:
case Type::LongTyID: case Type::LongTyID:
case Type::ULongTyID: return &GPRCInstance; case Type::ULongTyID: return &GPRCInstance;
case Type::FloatTyID: case Type::FloatTyID:
case Type::DoubleTyID: return &FPRCInstance; case Type::DoubleTyID: return &FPRCInstance;
} }

View File

@ -1,10 +1,10 @@
//===- AlphaRegisterInfo.h - Alpha Register Information Impl ----*- C++ -*-===// //===- AlphaRegisterInfo.h - Alpha Register Information Impl ----*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the Alpha implementation of the MRegisterInfo class. // This file contains the Alpha implementation of the MRegisterInfo class.
@ -33,7 +33,7 @@ struct AlphaRegisterInfo : public AlphaGenRegisterInfo {
void loadRegFromStackSlot(MachineBasicBlock &MBB, void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex) const; unsigned DestReg, int FrameIndex) const;
void copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, void copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned DestReg, unsigned SrcReg, unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *RC) const; const TargetRegisterClass *RC) const;

View File

@ -1,12 +1,12 @@
//===-- AlphaTargetMachine.cpp - Define TargetMachine for Alpha -----------===// //===-- AlphaTargetMachine.cpp - Define TargetMachine for Alpha -----------===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -27,8 +27,8 @@ namespace {
} }
namespace llvm { namespace llvm {
cl::opt<bool> EnableAlphaLSR("enable-lsr-for-alpha", cl::opt<bool> EnableAlphaLSR("enable-lsr-for-alpha",
cl::desc("Enable LSR for Alpha (beta option!)"), cl::desc("Enable LSR for Alpha (beta option!)"),
cl::Hidden); cl::Hidden);
} }
@ -50,7 +50,7 @@ unsigned AlphaTargetMachine::getModuleMatchQuality(const Module &M) {
} }
AlphaTargetMachine::AlphaTargetMachine( const Module &M, IntrinsicLowering *IL) AlphaTargetMachine::AlphaTargetMachine( const Module &M, IntrinsicLowering *IL)
: TargetMachine("alpha", IL, true), : TargetMachine("alpha", IL, true),
FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) //TODO: check these FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) //TODO: check these
{} {}
@ -59,7 +59,7 @@ AlphaTargetMachine::AlphaTargetMachine( const Module &M, IntrinsicLowering *IL)
/// ///
bool AlphaTargetMachine::addPassesToEmitAssembly(PassManager &PM, bool AlphaTargetMachine::addPassesToEmitAssembly(PassManager &PM,
std::ostream &Out) { std::ostream &Out) {
if (EnableAlphaLSR) { if (EnableAlphaLSR) {
PM.add(createLoopStrengthReducePass()); PM.add(createLoopStrengthReducePass());
PM.add(createCFGSimplificationPass()); PM.add(createCFGSimplificationPass());
@ -88,12 +88,12 @@ bool AlphaTargetMachine::addPassesToEmitAssembly(PassManager &PM,
PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createMachineFunctionPrinterPass(&std::cerr));
PM.add(createPrologEpilogCodeInserter()); PM.add(createPrologEpilogCodeInserter());
// Must run branch selection immediately preceding the asm printer // Must run branch selection immediately preceding the asm printer
//PM.add(createAlphaBranchSelectionPass()); //PM.add(createAlphaBranchSelectionPass());
PM.add(createAlphaCodePrinterPass(Out, *this)); PM.add(createAlphaCodePrinterPass(Out, *this));
PM.add(createMachineCodeDeleter()); PM.add(createMachineCodeDeleter());
return false; return false;
} }

View File

@ -1,12 +1,12 @@
//===-- AlphaTargetMachine.h - Define TargetMachine for Alpha ---*- C++ -*-===// //===-- AlphaTargetMachine.h - Define TargetMachine for Alpha ---*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file declares the Alpha-specific subclass of TargetMachine. // This file declares the Alpha-specific subclass of TargetMachine.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -30,13 +30,13 @@ class AlphaTargetMachine : public TargetMachine {
public: public:
AlphaTargetMachine(const Module &M, IntrinsicLowering *IL); AlphaTargetMachine(const Module &M, IntrinsicLowering *IL);
virtual const AlphaInstrInfo *getInstrInfo() const { return &InstrInfo; } virtual const AlphaInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; } virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
virtual const MRegisterInfo *getRegisterInfo() const { virtual const MRegisterInfo *getRegisterInfo() const {
return &InstrInfo.getRegisterInfo(); return &InstrInfo.getRegisterInfo();
} }
virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out); virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
static unsigned getModuleMatchQuality(const Module &M); static unsigned getModuleMatchQuality(const Module &M);

View File

@ -3,7 +3,7 @@
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the entry points for global functions defined in the IA64 // This file contains the entry points for global functions defined in the IA64

View File

@ -1,10 +1,10 @@
//===-- IA64AsmPrinter.cpp - Print out IA64 LLVM as assembly --------------===// //===-- IA64AsmPrinter.cpp - Print out IA64 LLVM as assembly --------------===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains a printer that converts from our internal representation // This file contains a printer that converts from our internal representation
@ -37,7 +37,7 @@ namespace {
struct IA64SharedAsmPrinter : public AsmPrinter { struct IA64SharedAsmPrinter : public AsmPrinter {
std::set<std::string> ExternalFunctionNames, ExternalObjectNames; std::set<std::string> ExternalFunctionNames, ExternalObjectNames;
IA64SharedAsmPrinter(std::ostream &O, TargetMachine &TM) IA64SharedAsmPrinter(std::ostream &O, TargetMachine &TM)
: AsmPrinter(O, TM) { } : AsmPrinter(O, TM) { }
@ -81,7 +81,7 @@ static void SwitchSection(std::ostream &OS, std::string &CurSection,
void IA64SharedAsmPrinter::printConstantPool(MachineConstantPool *MCP) { void IA64SharedAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants(); const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData(); const TargetData &TD = TM.getTargetData();
if (CP.empty()) return; if (CP.empty()) return;
O << "\n\t.section .data, \"aw\", \"progbits\"\n"; O << "\n\t.section .data, \"aw\", \"progbits\"\n";
@ -108,7 +108,7 @@ bool IA64SharedAsmPrinter::doFinalization(Module &M) {
unsigned Size = TD.getTypeSize(C->getType()); unsigned Size = TD.getTypeSize(C->getType());
unsigned Align = TD.getTypeAlignmentShift(C->getType()); unsigned Align = TD.getTypeAlignmentShift(C->getType());
if (C->isNullValue() && if (C->isNullValue() &&
(I->hasLinkOnceLinkage() || I->hasInternalLinkage() || (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
I->hasWeakLinkage() /* FIXME: Verify correct */)) { I->hasWeakLinkage() /* FIXME: Verify correct */)) {
SwitchSection(O, CurSection, ".data"); SwitchSection(O, CurSection, ".data");
@ -170,7 +170,7 @@ bool IA64SharedAsmPrinter::doFinalization(Module &M) {
O << "\t.global " << *i << "\n\t.type " << *i << ", @function\n"; O << "\t.global " << *i << "\n\t.type " << *i << ", @function\n";
} }
O << "\n\n"; O << "\n\n";
// we print out ".global X \n .type X, @object" for each external object // we print out ".global X \n .type X, @object" for each external object
O << "\n\n// (external) symbols referenced (and not defined) above: \n"; O << "\n\n// (external) symbols referenced (and not defined) above: \n";
for (std::set<std::string>::iterator i = ExternalObjectNames.begin(), for (std::set<std::string>::iterator i = ExternalObjectNames.begin(),
@ -224,7 +224,7 @@ namespace {
printOp(MO); printOp(MO);
} }
} }
void printS8ImmOperand(const MachineInstr *MI, unsigned OpNo, void printS8ImmOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
int val=(unsigned int)MI->getOperand(OpNo).getImmedValue(); int val=(unsigned int)MI->getOperand(OpNo).getImmedValue();
@ -251,15 +251,15 @@ namespace {
MVT::ValueType VT) { MVT::ValueType VT) {
O << (int64_t)MI->getOperand(OpNo).getImmedValue(); O << (int64_t)MI->getOperand(OpNo).getImmedValue();
} }
void printCallOperand(const MachineInstr *MI, unsigned OpNo, void printCallOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
printOp(MI->getOperand(OpNo), true); // this is a br.call instruction printOp(MI->getOperand(OpNo), true); // this is a br.call instruction
} }
void printMachineInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO, bool isBRCALLinsn= false); void printOp(const MachineOperand &MO, bool isBRCALLinsn= false);
bool runOnMachineFunction(MachineFunction &F); bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M); bool doInitialization(Module &M);
}; };
} // end of anonymous namespace } // end of anonymous namespace
@ -355,11 +355,11 @@ void IA64AsmPrinter::printOp(const MachineOperand &MO,
// @ltoff(@fptr(X)) ? // @ltoff(@fptr(X)) ?
if(F && !isBRCALLinsn /*&& F->isExternal()*/) if(F && !isBRCALLinsn /*&& F->isExternal()*/)
Needfptr=true; Needfptr=true;
// if this is the target of a call instruction, we should define // if this is the target of a call instruction, we should define
// the function somewhere (GNU gas has no problem without this, but // the function somewhere (GNU gas has no problem without this, but
// Intel ias rightly complains of an 'undefined symbol') // Intel ias rightly complains of an 'undefined symbol')
if(F /*&& isBRCALLinsn*/ && F->isExternal()) if(F /*&& isBRCALLinsn*/ && F->isExternal())
ExternalFunctionNames.insert(Mang->getValueName(MO.getGlobal())); ExternalFunctionNames.insert(Mang->getValueName(MO.getGlobal()));
else else
@ -387,7 +387,7 @@ void IA64AsmPrinter::printOp(const MachineOperand &MO,
ExternalFunctionNames.insert(MO.getSymbolName()); ExternalFunctionNames.insert(MO.getSymbolName());
return; return;
default: default:
O << "<AsmPrinter: unknown operand type: " << MO.getType() << " >"; return; O << "<AsmPrinter: unknown operand type: " << MO.getType() << " >"; return;
} }
} }
@ -395,16 +395,16 @@ void IA64AsmPrinter::printOp(const MachineOperand &MO,
/// MI to the current output stream. /// MI to the current output stream.
/// ///
void IA64AsmPrinter::printMachineInstruction(const MachineInstr *MI) { void IA64AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts; ++EmittedInsts;
// Call the autogenerated instruction printer routines. // Call the autogenerated instruction printer routines.
printInstruction(MI); printInstruction(MI);
} }
bool IA64AsmPrinter::doInitialization(Module &M) { bool IA64AsmPrinter::doInitialization(Module &M) {
AsmPrinter::doInitialization(M); AsmPrinter::doInitialization(M);
O << "\n.ident \"LLVM-ia64\"\n\n" O << "\n.ident \"LLVM-ia64\"\n\n"
<< "\t.psr lsb\n" // should be "msb" on HP-UX, for starters << "\t.psr lsb\n" // should be "msb" on HP-UX, for starters
<< "\t.radix C\n" << "\t.radix C\n"

View File

@ -1,10 +1,10 @@
//===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===// //===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file defines a pattern matching instruction selector for IA64. // This file defines a pattern matching instruction selector for IA64.
@ -36,7 +36,7 @@ using namespace llvm;
namespace { namespace {
class IA64TargetLowering : public TargetLowering { class IA64TargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area. int VarArgsFrameIndex; // FrameIndex for start of varargs area.
//int ReturnAddrIndex; // FrameIndex for return slot. //int ReturnAddrIndex; // FrameIndex for return slot.
unsigned GP, SP, RP; // FIXME - clean this mess up unsigned GP, SP, RP; // FIXME - clean this mess up
public: public:
@ -45,20 +45,20 @@ namespace {
// for ISD::RET down below. add an accessor instead? FIXME // for ISD::RET down below. add an accessor instead? FIXME
IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) { IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
// register class for general registers // register class for general registers
addRegisterClass(MVT::i64, IA64::GRRegisterClass); addRegisterClass(MVT::i64, IA64::GRRegisterClass);
// register class for FP registers // register class for FP registers
addRegisterClass(MVT::f64, IA64::FPRegisterClass); addRegisterClass(MVT::f64, IA64::FPRegisterClass);
// register class for predicate registers // register class for predicate registers
addRegisterClass(MVT::i1, IA64::PRRegisterClass); addRegisterClass(MVT::i1, IA64::PRRegisterClass);
setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setSetCCResultType(MVT::i1); setSetCCResultType(MVT::i1);
setShiftAmountType(MVT::i64); setShiftAmountType(MVT::i64);
setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote); setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
@ -75,7 +75,7 @@ namespace {
setOperationAction(ISD::UREM , MVT::f32 , Expand); setOperationAction(ISD::UREM , MVT::f32 , Expand);
setOperationAction(ISD::UREM , MVT::f64 , Expand); setOperationAction(ISD::UREM , MVT::f64 , Expand);
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
setOperationAction(ISD::MEMSET , MVT::Other, Expand); setOperationAction(ISD::MEMSET , MVT::Other, Expand);
setOperationAction(ISD::MEMCPY , MVT::Other, Expand); setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
@ -154,33 +154,33 @@ IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
MachineBasicBlock& BB = MF.front(); MachineBasicBlock& BB = MF.front();
unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35, unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
IA64::r36, IA64::r37, IA64::r38, IA64::r39}; IA64::r36, IA64::r37, IA64::r38, IA64::r39};
unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
IA64::F12,IA64::F13,IA64::F14, IA64::F15}; IA64::F12,IA64::F13,IA64::F14, IA64::F15};
unsigned argVreg[8]; unsigned argVreg[8];
unsigned argPreg[8]; unsigned argPreg[8];
unsigned argOpc[8]; unsigned argOpc[8];
unsigned used_FPArgs = 0; // how many FP args have been used so far? unsigned used_FPArgs = 0; // how many FP args have been used so far?
unsigned ArgOffset = 0; unsigned ArgOffset = 0;
int count = 0; int count = 0;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
{ {
SDOperand newroot, argt; SDOperand newroot, argt;
if(count < 8) { // need to fix this logic? maybe. if(count < 8) { // need to fix this logic? maybe.
switch (getValueType(I->getType())) { switch (getValueType(I->getType())) {
default: default:
std::cerr << "ERROR in LowerArgs: unknown type " std::cerr << "ERROR in LowerArgs: unknown type "
<< getValueType(I->getType()) << "\n"; << getValueType(I->getType()) << "\n";
abort(); abort();
case MVT::f32: case MVT::f32:
// fixme? (well, will need to for weird FP structy stuff, // fixme? (well, will need to for weird FP structy stuff,
// see intel ABI docs) // see intel ABI docs)
case MVT::f64: case MVT::f64:
//XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]); //XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
@ -202,10 +202,10 @@ IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
case MVT::i64: case MVT::i64:
//XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]); //XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
MF.addLiveIn(args_int[count]); // mark this register as liveIn MF.addLiveIn(args_int[count]); // mark this register as liveIn
argVreg[count] = argVreg[count] =
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
argPreg[count] = args_int[count]; argPreg[count] = args_int[count];
argOpc[count] = IA64::MOV; argOpc[count] = IA64::MOV;
argt = newroot = argt = newroot =
DAG.getCopyFromReg(argVreg[count], MVT::i64, DAG.getRoot()); DAG.getCopyFromReg(argVreg[count], MVT::i64, DAG.getRoot());
if ( getValueType(I->getType()) != MVT::i64) if ( getValueType(I->getType()) != MVT::i64)
@ -217,19 +217,19 @@ IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
// Create the frame index object for this incoming parameter... // Create the frame index object for this incoming parameter...
ArgOffset = 16 + 8 * (count - 8); ArgOffset = 16 + 8 * (count - 8);
int FI = MFI->CreateFixedObject(8, ArgOffset); int FI = MFI->CreateFixedObject(8, ArgOffset);
// Create the SelectionDAG nodes corresponding to a load // Create the SelectionDAG nodes corresponding to a load
//from this parameter //from this parameter
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
argt = newroot = DAG.getLoad(getValueType(I->getType()), argt = newroot = DAG.getLoad(getValueType(I->getType()),
DAG.getEntryNode(), FIN); DAG.getEntryNode(), FIN);
} }
++count; ++count;
DAG.setRoot(newroot.getValue(1)); DAG.setRoot(newroot.getValue(1));
ArgValues.push_back(argt); ArgValues.push_back(argt);
} }
// Create a vreg to hold the output of (what will become) // Create a vreg to hold the output of (what will become)
// the "alloc" instruction // the "alloc" instruction
VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
@ -251,14 +251,14 @@ IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
// ..hmm. // ..hmm.
unsigned tempOffset=0; unsigned tempOffset=0;
// if this is a varargs function, we simply lower llvm.va_start by // if this is a varargs function, we simply lower llvm.va_start by
// pointing to the first entry // pointing to the first entry
if(F.isVarArg()) { if(F.isVarArg()) {
tempOffset=0; tempOffset=0;
VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset); VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
} }
// here we actually do the moving of args, and store them to the stack // here we actually do the moving of args, and store them to the stack
// too if this is a varargs function: // too if this is a varargs function:
for (int i = 0; i < count && i < 8; ++i) { for (int i = 0; i < count && i < 8; ++i) {
@ -290,10 +290,10 @@ IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
MF.addLiveOut(IA64::F8); MF.addLiveOut(IA64::F8);
break; break;
} }
return ArgValues; return ArgValues;
} }
std::pair<SDOperand, SDOperand> std::pair<SDOperand, SDOperand>
IA64TargetLowering::LowerCallTo(SDOperand Chain, IA64TargetLowering::LowerCallTo(SDOperand Chain,
const Type *RetTy, bool isVarArg, const Type *RetTy, bool isVarArg,
@ -310,17 +310,17 @@ IA64TargetLowering::LowerCallTo(SDOperand Chain,
} else { } else {
outRegsUsed = Args.size(); outRegsUsed = Args.size();
} }
// FIXME? this WILL fail if we ever try to pass around an arg that // FIXME? this WILL fail if we ever try to pass around an arg that
// consumes more than a single output slot (a 'real' double, int128 // consumes more than a single output slot (a 'real' double, int128
// some sort of aggregate etc.), as we'll underestimate how many 'outX' // some sort of aggregate etc.), as we'll underestimate how many 'outX'
// registers we use. Hopefully, the assembler will notice. // registers we use. Hopefully, the assembler will notice.
MF.getInfo<IA64FunctionInfo>()->outRegsUsed= MF.getInfo<IA64FunctionInfo>()->outRegsUsed=
std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed); std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed);
Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy())); DAG.getConstant(NumBytes, getPointerTy()));
std::vector<SDOperand> args_to_use; std::vector<SDOperand> args_to_use;
for (unsigned i = 0, e = Args.size(); i != e; ++i) for (unsigned i = 0, e = Args.size(); i != e; ++i)
{ {
@ -478,10 +478,10 @@ static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned,
int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
if ((Imm = ExactLog2(v))) { // if a division by a power of two, say so if ((Imm = ExactLog2(v))) { // if a division by a power of two, say so
return 1; return 1;
} }
return 0; // fallthrough return 0; // fallthrough
} }
@ -493,8 +493,8 @@ static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) {
if ((Imm = ExactLog2sub1(v))!=666) { // if ANDing with ((2^n)-1) for some n if ((Imm = ExactLog2sub1(v))!=666) { // if ANDing with ((2^n)-1) for some n
return 1; // say so return 1; // say so
} }
return 0; // fallthrough return 0; // fallthrough
} }
@ -506,7 +506,7 @@ static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) {
if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so
Imm = v & 0x3FFF; // 14 bits Imm = v & 0x3FFF; // 14 bits
return 1; return 1;
} }
return 0; // fallthrough return 0; // fallthrough
} }
@ -518,7 +518,7 @@ static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) {
if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so
Imm = v & 0xFF; // 8 bits Imm = v & 0xFF; // 8 bits
return 1; return 1;
} }
return 0; // fallthrough return 0; // fallthrough
} }
@ -536,10 +536,10 @@ unsigned ISel::SelectExpr(SDOperand N) {
if (Node->getOpcode() == ISD::CopyFromReg) if (Node->getOpcode() == ISD::CopyFromReg)
// Just use the specified register as our input. // Just use the specified register as our input.
return dyn_cast<RegSDNode>(Node)->getReg(); return dyn_cast<RegSDNode>(Node)->getReg();
unsigned &Reg = ExprMap[N]; unsigned &Reg = ExprMap[N];
if (Reg) return Reg; if (Reg) return Reg;
if (N.getOpcode() != ISD::CALL) if (N.getOpcode() != ISD::CALL)
Reg = Result = (N.getValueType() != MVT::Other) ? Reg = Result = (N.getValueType() != MVT::Other) ?
MakeReg(N.getValueType()) : 1; MakeReg(N.getValueType()) : 1;
@ -556,7 +556,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
} }
} }
switch (N.getOpcode()) { switch (N.getOpcode()) {
default: default:
Node->dump(); Node->dump();
@ -614,8 +614,8 @@ unsigned ISel::SelectExpr(SDOperand N) {
<< " the stack alignment yet!"; << " the stack alignment yet!";
abort(); abort();
} }
/* /*
Select(N.getOperand(0)); Select(N.getOperand(0));
if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
{ {
@ -643,14 +643,14 @@ unsigned ISel::SelectExpr(SDOperand N) {
BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12); BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12);
return Result; return Result;
} }
case ISD::SELECT: { case ISD::SELECT: {
Tmp1 = SelectExpr(N.getOperand(0)); //Cond Tmp1 = SelectExpr(N.getOperand(0)); //Cond
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
unsigned bogoResult; unsigned bogoResult;
switch (N.getOperand(1).getValueType()) { switch (N.getOperand(1).getValueType()) {
default: assert(0 && default: assert(0 &&
"ISD::SELECT: 'select'ing something other than i64 or f64!\n"); "ISD::SELECT: 'select'ing something other than i64 or f64!\n");
@ -668,7 +668,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
// though this will work for now (no JIT) // though this will work for now (no JIT)
return Result; return Result;
} }
case ISD::Constant: { case ISD::Constant: {
unsigned depositPos=0; unsigned depositPos=0;
unsigned depositLen=0; unsigned depositLen=0;
@ -686,7 +686,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
} }
case MVT::i64: break; case MVT::i64: break;
} }
int64_t immediate = cast<ConstantSDNode>(N)->getValue(); int64_t immediate = cast<ConstantSDNode>(N)->getValue();
if(immediate==0) { // if the constant is just zero, if(immediate==0) { // if the constant is just zero,
@ -699,14 +699,14 @@ unsigned ISel::SelectExpr(SDOperand N) {
// turn into: "adds rDest=imm,r0" (and _not_ "andl"...) // turn into: "adds rDest=imm,r0" (and _not_ "andl"...)
BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate); BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate);
return Result; // early exit return Result; // early exit
} }
if (immediate <= 2097151 && immediate >= -2097152) { if (immediate <= 2097151 && immediate >= -2097152) {
// if this constants fits in 22 bits, we use a mov the assembler will // if this constants fits in 22 bits, we use a mov the assembler will
// turn into: "addl rDest=imm,r0" // turn into: "addl rDest=imm,r0"
BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate); BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate);
return Result; // early exit return Result; // early exit
} }
/* otherwise, our immediate is big, so we use movl */ /* otherwise, our immediate is big, so we use movl */
uint64_t Imm = immediate; uint64_t Imm = immediate;
@ -718,7 +718,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
BuildMI(BB, IA64::IDEF, 0, Result); BuildMI(BB, IA64::IDEF, 0, Result);
return Result; return Result;
} }
case ISD::GlobalAddress: { case ISD::GlobalAddress: {
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
unsigned Tmp1 = MakeReg(MVT::i64); unsigned Tmp1 = MakeReg(MVT::i64);
@ -728,7 +728,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
return Result; return Result;
} }
case ISD::ExternalSymbol: { case ISD::ExternalSymbol: {
const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol(); const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
// assert(0 && "sorry, but what did you want an ExternalSymbol for again?"); // assert(0 && "sorry, but what did you want an ExternalSymbol for again?");
@ -744,14 +744,14 @@ unsigned ISel::SelectExpr(SDOperand N) {
case ISD::ZERO_EXTEND: { case ISD::ZERO_EXTEND: {
Tmp1 = SelectExpr(N.getOperand(0)); // value Tmp1 = SelectExpr(N.getOperand(0)); // value
switch (N.getOperand(0).getValueType()) { switch (N.getOperand(0).getValueType()) {
default: assert(0 && "Cannot zero-extend this type!"); default: assert(0 && "Cannot zero-extend this type!");
case MVT::i8: Opc = IA64::ZXT1; break; case MVT::i8: Opc = IA64::ZXT1; break;
case MVT::i16: Opc = IA64::ZXT2; break; case MVT::i16: Opc = IA64::ZXT2; break;
case MVT::i32: Opc = IA64::ZXT4; break; case MVT::i32: Opc = IA64::ZXT4; break;
// we handle bools differently! : // we handle bools differently! :
case MVT::i1: { // if the predicate reg has 1, we want a '1' in our GR. case MVT::i1: { // if the predicate reg has 1, we want a '1' in our GR.
unsigned dummy = MakeReg(MVT::i64); unsigned dummy = MakeReg(MVT::i64);
// first load zero: // first load zero:
@ -772,7 +772,7 @@ unsigned ISel::SelectExpr(SDOperand N) {
assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n"); assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
Tmp1 = SelectExpr(N.getOperand(0)); // value Tmp1 = SelectExpr(N.getOperand(0)); // value
switch (N.getOperand(0).getValueType()) { switch (N.getOperand(0).getValueType()) {
default: assert(0 && "Cannot sign-extend this type!"); default: assert(0 && "Cannot sign-extend this type!");
case MVT::i1: assert(0 && "trying to sign extend a bool? ow.\n"); case MVT::i1: assert(0 && "trying to sign extend a bool? ow.\n");
@ -928,7 +928,7 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result; return Result;
} }
case ISD::SUB: { case ISD::SUB: {
if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL && if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub
@ -962,11 +962,11 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1); BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1);
return Result; return Result;
} }
case ISD::FNEG: { case ISD::FNEG: {
assert(DestType == MVT::f64 && "trying to fneg something other than f64?"); assert(DestType == MVT::f64 && "trying to fneg something other than f64?");
if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()? if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()?
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs
} else { } else {
@ -976,14 +976,14 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
return Result; return Result;
} }
case ISD::AND: { case ISD::AND: {
switch (N.getValueType()) { switch (N.getValueType()) {
default: assert(0 && "Cannot AND this type!"); default: assert(0 && "Cannot AND this type!");
case MVT::i1: { // if a bool, we emit a pseudocode AND case MVT::i1: { // if a bool, we emit a pseudocode AND
unsigned pA = SelectExpr(N.getOperand(0)); unsigned pA = SelectExpr(N.getOperand(0));
unsigned pB = SelectExpr(N.getOperand(1)); unsigned pB = SelectExpr(N.getOperand(1));
/* our pseudocode for AND is: /* our pseudocode for AND is:
* *
(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA (pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
@ -995,12 +995,12 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
*/ */
unsigned pTemp = MakeReg(MVT::i1); unsigned pTemp = MakeReg(MVT::i1);
unsigned bogusTemp1 = MakeReg(MVT::i1); unsigned bogusTemp1 = MakeReg(MVT::i1);
unsigned bogusTemp2 = MakeReg(MVT::i1); unsigned bogusTemp2 = MakeReg(MVT::i1);
unsigned bogusTemp3 = MakeReg(MVT::i1); unsigned bogusTemp3 = MakeReg(MVT::i1);
unsigned bogusTemp4 = MakeReg(MVT::i1); unsigned bogusTemp4 = MakeReg(MVT::i1);
BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1) BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1)
.addReg(IA64::r0).addReg(IA64::r0).addReg(pA); .addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2) BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2)
@ -1011,7 +1011,7 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
.addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp); .addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp);
break; break;
} }
// if not a bool, we just AND away: // if not a bool, we just AND away:
case MVT::i8: case MVT::i8:
case MVT::i16: case MVT::i16:
@ -1043,7 +1043,7 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
} }
return Result; return Result;
} }
case ISD::OR: { case ISD::OR: {
switch (N.getValueType()) { switch (N.getValueType()) {
default: assert(0 && "Cannot OR this type!"); default: assert(0 && "Cannot OR this type!");
@ -1052,7 +1052,7 @@ assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
unsigned pB = SelectExpr(N.getOperand(1)); unsigned pB = SelectExpr(N.getOperand(1));
unsigned pTemp1 = MakeReg(MVT::i1); unsigned pTemp1 = MakeReg(MVT::i1);
/* our pseudocode for OR is: /* our pseudocode for OR is:
* *
@ -1083,7 +1083,7 @@ pC = pA OR pB
} }
return Result; return Result;
} }
case ISD::XOR: { case ISD::XOR: {
switch (N.getValueType()) { switch (N.getValueType()) {
default: assert(0 && "Cannot XOR this type!"); default: assert(0 && "Cannot XOR this type!");
@ -1163,7 +1163,7 @@ pC = pA OR pB
} }
return Result; return Result;
} }
case ISD::SRL: { case ISD::SRL: {
Tmp1 = SelectExpr(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
@ -1175,7 +1175,7 @@ pC = pA OR pB
} }
return Result; return Result;
} }
case ISD::SRA: { case ISD::SRA: {
Tmp1 = SelectExpr(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
@ -1235,7 +1235,7 @@ pC = pA OR pB
} }
} }
unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch
unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers, unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers,
unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs. unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs.
unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64? unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64?
@ -1252,14 +1252,14 @@ pC = pA OR pB
unsigned TmpF13=MakeReg(MVT::f64); unsigned TmpF13=MakeReg(MVT::f64);
unsigned TmpF14=MakeReg(MVT::f64); unsigned TmpF14=MakeReg(MVT::f64);
unsigned TmpF15=MakeReg(MVT::f64); unsigned TmpF15=MakeReg(MVT::f64);
// OK, emit some code: // OK, emit some code:
if(!isFP) { if(!isFP) {
// first, load the inputs into FP regs. // first, load the inputs into FP regs.
BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1); BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1);
BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2); BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2);
// next, convert the inputs to FP // next, convert the inputs to FP
if(isSigned) { if(isSigned) {
BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1); BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1);
@ -1268,7 +1268,7 @@ pC = pA OR pB
BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1); BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1);
BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2); BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2);
} }
} else { // this is an FP divide/remainder, so we 'leak' some temp } else { // this is an FP divide/remainder, so we 'leak' some temp
// regs and assign TmpF3=Tmp1, TmpF4=Tmp2 // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
TmpF3=Tmp1; TmpF3=Tmp1;
@ -1340,7 +1340,7 @@ pC = pA OR pB
// we do a 'conditional fmov' (of the correct result, depending // we do a 'conditional fmov' (of the correct result, depending
// on how the frcpa predicate turned out) // on how the frcpa predicate turned out)
BuildMI(BB, IA64::PFMOV, 2, bogoResult) BuildMI(BB, IA64::PFMOV, 2, bogoResult)
.addReg(TmpF12).addReg(TmpPR2); .addReg(TmpF12).addReg(TmpPR2);
BuildMI(BB, IA64::CFMOV, 2, Result) BuildMI(BB, IA64::CFMOV, 2, Result)
.addReg(bogoResult).addReg(TmpF15).addReg(TmpPR); .addReg(bogoResult).addReg(TmpF15).addReg(TmpPR);
} }
@ -1502,7 +1502,7 @@ pC = pA OR pB
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
bool isBool=false; bool isBool=false;
if(opcode == ISD::LOAD) { // this is a LOAD if(opcode == ISD::LOAD) { // this is a LOAD
switch (Node->getValueType(0)) { switch (Node->getValueType(0)) {
default: assert(0 && "Cannot load this type!"); default: assert(0 && "Cannot load this type!");
@ -1512,7 +1512,7 @@ pC = pA OR pB
case MVT::i16: Opc = IA64::LD2; break; case MVT::i16: Opc = IA64::LD2; break;
case MVT::i32: Opc = IA64::LD4; break; case MVT::i32: Opc = IA64::LD4; break;
case MVT::i64: Opc = IA64::LD8; break; case MVT::i64: Opc = IA64::LD8; break;
case MVT::f32: Opc = IA64::LDF4; break; case MVT::f32: Opc = IA64::LDF4; break;
case MVT::f64: Opc = IA64::LDF8; break; case MVT::f64: Opc = IA64::LDF8; break;
} }
@ -1527,7 +1527,7 @@ pC = pA OR pB
case MVT::f32: Opc = IA64::LDF4; break; case MVT::f32: Opc = IA64::LDF4; break;
} }
} }
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1); SDOperand Address = N.getOperand(1);
@ -1580,7 +1580,7 @@ pC = pA OR pB
// we compare to 0. true? 0. false? 1. // we compare to 0. true? 0. false? 1.
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
} }
} else { // none of the above... } else { // none of the above...
Select(Chain); Select(Chain);
Tmp2 = SelectExpr(Address); Tmp2 = SelectExpr(Address);
if(!isBool) if(!isBool)
@ -1597,12 +1597,12 @@ pC = pA OR pB
return Result; return Result;
} }
case ISD::CopyFromReg: { case ISD::CopyFromReg: {
if (Result == 1) if (Result == 1)
Result = ExprMap[N.getValue(0)] = Result = ExprMap[N.getValue(0)] =
MakeReg(N.getValue(0).getValueType()); MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0); SDOperand Chain = N.getOperand(0);
Select(Chain); Select(Chain);
@ -1622,24 +1622,24 @@ pC = pA OR pB
// The chain for this call is now lowered. // The chain for this call is now lowered.
ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1)); ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1));
//grab the arguments //grab the arguments
std::vector<unsigned> argvregs; std::vector<unsigned> argvregs;
for(int i = 2, e = Node->getNumOperands(); i < e; ++i) for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
argvregs.push_back(SelectExpr(N.getOperand(i))); argvregs.push_back(SelectExpr(N.getOperand(i)));
// see section 8.5.8 of "Itanium Software Conventions and // see section 8.5.8 of "Itanium Software Conventions and
// Runtime Architecture Guide to see some examples of what's going // Runtime Architecture Guide to see some examples of what's going
// on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7, // on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7,
// while FP args get mapped to F8->F15 as needed) // while FP args get mapped to F8->F15 as needed)
unsigned used_FPArgs=0; // how many FP Args have been used so far? unsigned used_FPArgs=0; // how many FP Args have been used so far?
// in reg args // in reg args
for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i) for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i)
{ {
unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3, unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3,
IA64::out4, IA64::out5, IA64::out6, IA64::out7 }; IA64::out4, IA64::out5, IA64::out6, IA64::out7 };
unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
IA64::F12, IA64::F13, IA64::F14, IA64::F15 }; IA64::F12, IA64::F13, IA64::F14, IA64::F15 };
@ -1649,7 +1649,7 @@ pC = pA OR pB
default: // XXX do we need to support MVT::i1 here? default: // XXX do we need to support MVT::i1 here?
Node->dump(); Node->dump();
N.getOperand(i).Val->dump(); N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " << std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << std::endl; N.getOperand(i+2).getValueType() << std::endl;
assert(0 && "Unknown value type for call"); assert(0 && "Unknown value type for call");
case MVT::i64: case MVT::i64:
@ -1670,10 +1670,10 @@ pC = pA OR pB
unsigned tempAddr = MakeReg(MVT::i64); unsigned tempAddr = MakeReg(MVT::i64);
switch(N.getOperand(i+2).getValueType()) { switch(N.getOperand(i+2).getValueType()) {
default: default:
Node->dump(); Node->dump();
N.getOperand(i).Val->dump(); N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " << std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n"; N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call"); assert(0 && "Unknown value type for call");
case MVT::i1: // FIXME? case MVT::i1: // FIXME?
@ -1695,17 +1695,17 @@ pC = pA OR pB
} }
/* XXX we want to re-enable direct branches! crippling them now /* XXX we want to re-enable direct branches! crippling them now
* to stress-test indirect branches.: * to stress-test indirect branches.:
//build the right kind of call //build the right kind of call
if (GlobalAddressSDNode *GASD = if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
{ {
BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true); BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true);
IA64Lowering.restoreGP_SP_RP(BB); IA64Lowering.restoreGP_SP_RP(BB);
} }
^^^^^^^^^^^^^ we want this code one day XXX */ ^^^^^^^^^^^^^ we want this code one day XXX */
if (ExternalSymbolSDNode *ESSDN = if (ExternalSymbolSDNode *ESSDN =
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
{ // FIXME : currently need this case for correctness, to avoid { // FIXME : currently need this case for correctness, to avoid
// "non-pic code with imm relocation against dynamic symbol" errors // "non-pic code with imm relocation against dynamic symbol" errors
BuildMI(BB, IA64::BRCALL, 1) BuildMI(BB, IA64::BRCALL, 1)
@ -1718,7 +1718,7 @@ pC = pA OR pB
unsigned targetEntryPoint=MakeReg(MVT::i64); unsigned targetEntryPoint=MakeReg(MVT::i64);
unsigned targetGPAddr=MakeReg(MVT::i64); unsigned targetGPAddr=MakeReg(MVT::i64);
unsigned currentGP=MakeReg(MVT::i64); unsigned currentGP=MakeReg(MVT::i64);
// b6 is a scratch branch register, we load the target entry point // b6 is a scratch branch register, we load the target entry point
// from the base of the function descriptor // from the base of the function descriptor
BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1); BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1);
@ -1726,7 +1726,7 @@ pC = pA OR pB
// save the current GP: // save the current GP:
BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1); BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1);
/* TODO: we need to make sure doing this never, ever loads a /* TODO: we need to make sure doing this never, ever loads a
* bogus value into r1 (GP). */ * bogus value into r1 (GP). */
// load the target GP (which is at mem[functiondescriptor+8]) // load the target GP (which is at mem[functiondescriptor+8])
@ -1761,7 +1761,7 @@ pC = pA OR pB
return Result+N.ResNo; return Result+N.ResNo;
} }
} // <- uhhh XXX } // <- uhhh XXX
return 0; return 0;
} }
@ -1780,7 +1780,7 @@ void ISel::Select(SDOperand N) {
assert(0 && "Node not handled yet!"); assert(0 && "Node not handled yet!");
case ISD::EntryToken: return; // Noop case ISD::EntryToken: return; // Noop
case ISD::TokenFactor: { case ISD::TokenFactor: {
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i)); Select(Node->getOperand(i));
@ -1789,9 +1789,9 @@ void ISel::Select(SDOperand N) {
case ISD::CopyToReg: { case ISD::CopyToReg: {
Select(N.getOperand(0)); Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = cast<RegSDNode>(N)->getReg(); Tmp2 = cast<RegSDNode>(N)->getReg();
if (Tmp1 != Tmp2) { if (Tmp1 != Tmp2) {
if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode
BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2) BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2)
@ -1803,7 +1803,7 @@ void ISel::Select(SDOperand N) {
} }
return; return;
} }
case ISD::RET: { case ISD::RET: {
/* what the heck is going on here: /* what the heck is going on here:
@ -1824,7 +1824,7 @@ void ISel::Select(SDOperand N) {
<_sabre_> these operand often define chains, they are the last operand <_sabre_> these operand often define chains, they are the last operand
<_sabre_> they are printed as 'ch' if you do DAG.dump() <_sabre_> they are printed as 'ch' if you do DAG.dump()
*/ */
switch (N.getNumOperands()) { switch (N.getNumOperands()) {
default: default:
assert(0 && "Unknown return instruction!"); assert(0 && "Unknown return instruction!");
@ -1839,7 +1839,7 @@ void ISel::Select(SDOperand N) {
// FIXME: need to round floats - 80 bits is bad, the tester // FIXME: need to round floats - 80 bits is bad, the tester
// told me so // told me so
case MVT::i64: case MVT::i64:
// we mark r8 as live on exit up above in LowerArguments() // we mark r8 as live on exit up above in LowerArguments()
BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1); BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
break; break;
case MVT::f64: case MVT::f64:
@ -1856,7 +1856,7 @@ void ISel::Select(SDOperand N) {
BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction
return; return;
} }
case ISD::BR: { case ISD::BR: {
Select(N.getOperand(0)); Select(N.getOperand(0));
MachineBasicBlock *Dest = MachineBasicBlock *Dest =
@ -1882,7 +1882,7 @@ void ISel::Select(SDOperand N) {
// XXX HACK! we do _not_ need long branches all the time // XXX HACK! we do _not_ need long branches all the time
return; return;
} }
case ISD::EXTLOAD: case ISD::EXTLOAD:
case ISD::ZEXTLOAD: case ISD::ZEXTLOAD:
case ISD::SEXTLOAD: case ISD::SEXTLOAD:
@ -1899,7 +1899,7 @@ void ISel::Select(SDOperand N) {
Tmp1 = SelectExpr(N.getOperand(1)); // value Tmp1 = SelectExpr(N.getOperand(1)); // value
bool isBool=false; bool isBool=false;
if(opcode == ISD::STORE) { if(opcode == ISD::STORE) {
switch (N.getOperand(1).getValueType()) { switch (N.getOperand(1).getValueType()) {
default: assert(0 && "Cannot store this type!"); default: assert(0 && "Cannot store this type!");
@ -1909,7 +1909,7 @@ void ISel::Select(SDOperand N) {
case MVT::i16: Opc = IA64::ST2; break; case MVT::i16: Opc = IA64::ST2; break;
case MVT::i32: Opc = IA64::ST4; break; case MVT::i32: Opc = IA64::ST4; break;
case MVT::i64: Opc = IA64::ST8; break; case MVT::i64: Opc = IA64::ST8; break;
case MVT::f32: Opc = IA64::STF4; break; case MVT::f32: Opc = IA64::STF4; break;
case MVT::f64: Opc = IA64::STF8; break; case MVT::f64: Opc = IA64::STF8; break;
} }
@ -1921,7 +1921,7 @@ void ISel::Select(SDOperand N) {
case MVT::i8: Opc = IA64::ST1; break; case MVT::i8: Opc = IA64::ST1; break;
case MVT::i16: Opc = IA64::ST2; break; case MVT::i16: Opc = IA64::ST2; break;
case MVT::i32: Opc = IA64::ST4; break; case MVT::i32: Opc = IA64::ST4; break;
case MVT::f32: Opc = IA64::STF4; break; case MVT::f32: Opc = IA64::STF4; break;
} }
} }
@ -1932,7 +1932,7 @@ void ISel::Select(SDOperand N) {
.addGlobalAddress(cast<GlobalAddressSDNode> .addGlobalAddress(cast<GlobalAddressSDNode>
(N.getOperand(2))->getGlobal()).addReg(IA64::r1); (N.getOperand(2))->getGlobal()).addReg(IA64::r1);
BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
if(!isBool) if(!isBool)
BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1); BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1);
else { // we are storing a bool, so emit a little pseudocode else { // we are storing a bool, so emit a little pseudocode
@ -1955,7 +1955,7 @@ void ISel::Select(SDOperand N) {
BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1); BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1);
} else { // otherwise } else { // otherwise
Tmp2 = SelectExpr(N.getOperand(2)); //address Tmp2 = SelectExpr(N.getOperand(2)); //address
if(!isBool) if(!isBool)
BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1);
else { // we are storing a bool, so emit a little pseudocode else { // we are storing a bool, so emit a little pseudocode
// to store a predicate register as one byte // to store a predicate register as one byte
@ -1970,12 +1970,12 @@ void ISel::Select(SDOperand N) {
} }
return; return;
} }
case ISD::ADJCALLSTACKDOWN: case ISD::ADJCALLSTACKDOWN:
case ISD::ADJCALLSTACKUP: { case ISD::ADJCALLSTACKUP: {
Select(N.getOperand(0)); Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? IA64::ADJUSTCALLSTACKDOWN : Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? IA64::ADJUSTCALLSTACKDOWN :
IA64::ADJUSTCALLSTACKUP; IA64::ADJUSTCALLSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1); BuildMI(BB, Opc, 1).addImm(Tmp1);
@ -1993,7 +1993,7 @@ void ISel::Select(SDOperand N) {
/// description file. /// description file.
/// ///
FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) { FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) {
return new ISel(TM); return new ISel(TM);
} }

View File

@ -1,10 +1,10 @@
//===-- IA64PCInstrBuilder.h - Aids for building IA64 insts -----*- C++ -*-===// //===-- IA64PCInstrBuilder.h - Aids for building IA64 insts -----*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file exposes functions that may be used with BuildMI from the // This file exposes functions that may be used with BuildMI from the
@ -26,7 +26,7 @@ namespace llvm {
/// This allows a constant offset to be specified as well... /// This allows a constant offset to be specified as well...
/// ///
inline const MachineInstrBuilder& inline const MachineInstrBuilder&
addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0, addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0,
bool mem = true) { bool mem = true) {
if (mem) if (mem)
return MIB.addSImm(Offset).addFrameIndex(FI); return MIB.addSImm(Offset).addFrameIndex(FI);

View File

@ -1,10 +1,10 @@
//===- IA64InstrInfo.cpp - IA64 Instruction Information -----------*- C++ -*-===// //===- IA64InstrInfo.cpp - IA64 Instruction Information -----------*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by the LLVM research group and is distributed under // This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details. // the University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the IA64 implementation of the TargetInstrInfo class. // This file contains the IA64 implementation of the TargetInstrInfo class.

View File

@ -1,10 +1,10 @@
//===- IA64InstrInfo.h - IA64 Instruction Information ----------*- C++ -*- ===// //===- IA64InstrInfo.h - IA64 Instruction Information ----------*- C++ -*- ===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the IA64 implementation of the TargetInstrInfo class. // This file contains the IA64 implementation of the TargetInstrInfo class.

View File

@ -1,10 +1,10 @@
//===-- IA64MachineFunctionInfo.h - IA64-specific information ---*- C++ -*-===// //===-- IA64MachineFunctionInfo.h - IA64-specific information ---*- C++ -*-===//
//===-- for MachineFunction ---*- C++ -*-===// //===-- for MachineFunction ---*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file declares IA64-specific per-machine-function information. // This file declares IA64-specific per-machine-function information.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -18,7 +18,7 @@
namespace llvm { namespace llvm {
class IA64FunctionInfo : public MachineFunctionInfo { class IA64FunctionInfo : public MachineFunctionInfo {
public: public:
unsigned outRegsUsed; // how many 'out' registers are used unsigned outRegsUsed; // how many 'out' registers are used
// by this machinefunction? (used to compute the appropriate // by this machinefunction? (used to compute the appropriate

View File

@ -42,7 +42,7 @@ static const TargetRegisterClass *getClass(unsigned SrcReg) {
return IA64::FPRegisterClass; return IA64::FPRegisterClass;
if (IA64::PRRegisterClass->contains(SrcReg)) if (IA64::PRRegisterClass->contains(SrcReg))
return IA64::PRRegisterClass; return IA64::PRRegisterClass;
assert(IA64::GRRegisterClass->contains(SrcReg) && assert(IA64::GRRegisterClass->contains(SrcReg) &&
"PROBLEM: Reg is not FP, predicate or GR!"); "PROBLEM: Reg is not FP, predicate or GR!");
return IA64::GRRegisterClass; return IA64::GRRegisterClass;
@ -130,7 +130,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
// alignment boundary. // alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align; Amount = (Amount+Align-1)/Align*Align;
MachineInstr *New; MachineInstr *New;
if (Old->getOpcode() == IA64::ADJUSTCALLSTACKDOWN) { if (Old->getOpcode() == IA64::ADJUSTCALLSTACKDOWN) {
New=BuildMI(IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12) New=BuildMI(IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12)
@ -156,7 +156,7 @@ void IA64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const
MachineFunction &MF = *MBB.getParent(); MachineFunction &MF = *MBB.getParent();
bool FP = hasFP(MF); bool FP = hasFP(MF);
while (!MI.getOperand(i).isFrameIndex()) { while (!MI.getOperand(i).isFrameIndex()) {
++i; ++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
@ -204,26 +204,26 @@ void IA64RegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineFrameInfo *MFI = MF.getFrameInfo(); MachineFrameInfo *MFI = MF.getFrameInfo();
MachineInstr *MI; MachineInstr *MI;
bool FP = hasFP(MF); bool FP = hasFP(MF);
// first, we handle the 'alloc' instruction, that should be right up the // first, we handle the 'alloc' instruction, that should be right up the
// top of any function // top of any function
static const unsigned RegsInOrder[96] = { // there are 96 GPRs the static const unsigned RegsInOrder[96] = { // there are 96 GPRs the
// RSE worries about // RSE worries about
IA64::r32, IA64::r33, IA64::r34, IA64::r35, IA64::r32, IA64::r33, IA64::r34, IA64::r35,
IA64::r36, IA64::r37, IA64::r38, IA64::r39, IA64::r40, IA64::r41, IA64::r36, IA64::r37, IA64::r38, IA64::r39, IA64::r40, IA64::r41,
IA64::r42, IA64::r43, IA64::r44, IA64::r45, IA64::r46, IA64::r47, IA64::r42, IA64::r43, IA64::r44, IA64::r45, IA64::r46, IA64::r47,
IA64::r48, IA64::r49, IA64::r50, IA64::r51, IA64::r52, IA64::r53, IA64::r48, IA64::r49, IA64::r50, IA64::r51, IA64::r52, IA64::r53,
IA64::r54, IA64::r55, IA64::r56, IA64::r57, IA64::r58, IA64::r59, IA64::r54, IA64::r55, IA64::r56, IA64::r57, IA64::r58, IA64::r59,
IA64::r60, IA64::r61, IA64::r62, IA64::r63, IA64::r64, IA64::r65, IA64::r60, IA64::r61, IA64::r62, IA64::r63, IA64::r64, IA64::r65,
IA64::r66, IA64::r67, IA64::r68, IA64::r69, IA64::r70, IA64::r71, IA64::r66, IA64::r67, IA64::r68, IA64::r69, IA64::r70, IA64::r71,
IA64::r72, IA64::r73, IA64::r74, IA64::r75, IA64::r76, IA64::r77, IA64::r72, IA64::r73, IA64::r74, IA64::r75, IA64::r76, IA64::r77,
IA64::r78, IA64::r79, IA64::r80, IA64::r81, IA64::r82, IA64::r83, IA64::r78, IA64::r79, IA64::r80, IA64::r81, IA64::r82, IA64::r83,
IA64::r84, IA64::r85, IA64::r86, IA64::r87, IA64::r88, IA64::r89, IA64::r84, IA64::r85, IA64::r86, IA64::r87, IA64::r88, IA64::r89,
IA64::r90, IA64::r91, IA64::r92, IA64::r93, IA64::r94, IA64::r95, IA64::r90, IA64::r91, IA64::r92, IA64::r93, IA64::r94, IA64::r95,
IA64::r96, IA64::r97, IA64::r98, IA64::r99, IA64::r100, IA64::r101, IA64::r96, IA64::r97, IA64::r98, IA64::r99, IA64::r100, IA64::r101,
IA64::r102, IA64::r103, IA64::r104, IA64::r105, IA64::r106, IA64::r107, IA64::r102, IA64::r103, IA64::r104, IA64::r105, IA64::r106, IA64::r107,
IA64::r108, IA64::r109, IA64::r110, IA64::r111, IA64::r112, IA64::r113, IA64::r108, IA64::r109, IA64::r110, IA64::r111, IA64::r112, IA64::r113,
IA64::r114, IA64::r115, IA64::r116, IA64::r117, IA64::r118, IA64::r119, IA64::r114, IA64::r115, IA64::r116, IA64::r117, IA64::r118, IA64::r119,
IA64::r120, IA64::r121, IA64::r122, IA64::r123, IA64::r124, IA64::r125, IA64::r120, IA64::r121, IA64::r122, IA64::r123, IA64::r124, IA64::r125,
IA64::r126, IA64::r127 }; IA64::r126, IA64::r127 };
@ -244,17 +244,17 @@ void IA64RegisterInfo::emitPrologue(MachineFunction &MF) const {
break; break;
} }
} }
MI=BuildMI(IA64::ALLOC,5).addReg(dstRegOfPseudoAlloc).addImm(0).\ MI=BuildMI(IA64::ALLOC,5).addReg(dstRegOfPseudoAlloc).addImm(0).\
addImm(numStackedGPRsUsed).addImm(numOutRegsUsed).addImm(0); addImm(numStackedGPRsUsed).addImm(numOutRegsUsed).addImm(0);
MBB.insert(MBBI, MI); MBB.insert(MBBI, MI);
// Get the number of bytes to allocate from the FrameInfo // Get the number of bytes to allocate from the FrameInfo
unsigned NumBytes = MFI->getStackSize(); unsigned NumBytes = MFI->getStackSize();
if (MFI->hasCalls() && !FP) { if (MFI->hasCalls() && !FP) {
// We reserve argument space for call sites in the function immediately on // We reserve argument space for call sites in the function immediately on
// entry to the current function. This eliminates the need for add/sub // entry to the current function. This eliminates the need for add/sub
// brackets around call sites. // brackets around call sites.
NumBytes += MFI->getMaxCallFrameSize(); NumBytes += MFI->getMaxCallFrameSize();
} }
@ -286,7 +286,7 @@ void IA64RegisterInfo::emitPrologue(MachineFunction &MF) const {
MI=BuildMI(IA64::ADD, 2, IA64::r12).addReg(IA64::r12).addReg(IA64::r22); MI=BuildMI(IA64::ADD, 2, IA64::r12).addReg(IA64::r12).addReg(IA64::r22);
MBB.insert(MBBI, MI); // then add (subtract) it to r12 (stack ptr) MBB.insert(MBBI, MI); // then add (subtract) it to r12 (stack ptr)
} }
// now if we need to, save the old FP and set the new // now if we need to, save the old FP and set the new
if (FP) { if (FP) {
MI = BuildMI(IA64::ST8, 2).addReg(IA64::r12).addReg(IA64::r15); MI = BuildMI(IA64::ST8, 2).addReg(IA64::r12).addReg(IA64::r15);
@ -294,7 +294,7 @@ void IA64RegisterInfo::emitPrologue(MachineFunction &MF) const {
// this must be the last instr in the prolog ? (XXX: why??) // this must be the last instr in the prolog ? (XXX: why??)
MI = BuildMI(IA64::MOV, 1, IA64::r15).addReg(IA64::r12); MI = BuildMI(IA64::MOV, 1, IA64::r15).addReg(IA64::r12);
MBB.insert(MBBI, MI); MBB.insert(MBBI, MI);
} }
} }
@ -322,7 +322,7 @@ void IA64RegisterInfo::emitEpilogue(MachineFunction &MF,
MBB.insert(MBBI, MI); MBB.insert(MBBI, MI);
} }
if (NumBytes != 0) if (NumBytes != 0)
{ {
if (NumBytes <= 8191) { if (NumBytes <= 8191) {
MI=BuildMI(IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12).addImm(NumBytes); MI=BuildMI(IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12).addImm(NumBytes);

View File

@ -1,10 +1,10 @@
//===- IA64RegisterInfo.h - IA64 Register Information Impl ------*- C++ -*-===// //===- IA64RegisterInfo.h - IA64 Register Information Impl ------*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file contains the IA64 implementation of the MRegisterInfo class. // This file contains the IA64 implementation of the MRegisterInfo class.
@ -33,7 +33,7 @@ struct IA64RegisterInfo : public IA64GenRegisterInfo {
void loadRegFromStackSlot(MachineBasicBlock &MBB, void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex) const; unsigned DestReg, int FrameIndex) const;
void copyRegToReg(MachineBasicBlock &MBB, void copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg, unsigned DestReg, unsigned SrcReg,

View File

@ -1,12 +1,12 @@
//===-- IA64TargetMachine.cpp - Define TargetMachine for IA64 -------------===// //===-- IA64TargetMachine.cpp - Define TargetMachine for IA64 -------------===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file defines the IA64 specific subclass of TargetMachine. // This file defines the IA64 specific subclass of TargetMachine.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//

View File

@ -1,12 +1,12 @@
//===-- IA64TargetMachine.h - Define TargetMachine for IA64 ---*- C++ -*---===// //===-- IA64TargetMachine.h - Define TargetMachine for IA64 ---*- C++ -*---===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file was developed by Duraid Madina and is distributed under the // This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details. // University of Illinois Open Source License. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file declares the IA64 specific subclass of TargetMachine. // This file declares the IA64 specific subclass of TargetMachine.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//