mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-09-28 07:17:32 +00:00
Various cleanups:
- Remove tabs - Standardize use of space around ( and ). - Consolidate the ConstantPlaceHolder class - Rename two methods to be more meaningful (ParseType, ParseTypes) - Correct indentation of blocks - Add documentation - Convert input dependent asserts to error(...) so it throws instead. Provide placeholder implementations of read_float and read_double that still read in platform-specific endianess. When I figure out how to do this without knowing the endianess of the platform, it will get implemented correctly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14765 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -29,24 +29,22 @@
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
|
||||
/// @brief A class for maintaining the slot number definition
|
||||
/// as a placeholder for the actual definition.
|
||||
template<class SuperType>
|
||||
class PlaceholderDef : public SuperType {
|
||||
/// as a placeholder for the actual definition for forward constants defs.
|
||||
class ConstantPlaceHolder : public ConstantExpr {
|
||||
unsigned ID;
|
||||
PlaceholderDef(); // DO NOT IMPLEMENT
|
||||
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
|
||||
ConstantPlaceHolder(); // DO NOT IMPLEMENT
|
||||
void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
|
||||
public:
|
||||
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
|
||||
ConstantPlaceHolder(const Type *Ty, unsigned id)
|
||||
: ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty),
|
||||
ID(id) {}
|
||||
unsigned getID() { return ID; }
|
||||
};
|
||||
|
||||
struct ConstantPlaceHolderHelper : public ConstantExpr {
|
||||
ConstantPlaceHolderHelper(const Type *Ty)
|
||||
: ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {}
|
||||
};
|
||||
|
||||
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
|
||||
}
|
||||
|
||||
// Provide some details on error
|
||||
inline void BytecodeReader::error(std::string err) {
|
||||
@@ -156,6 +154,22 @@ inline void BytecodeReader::read_data(void *Ptr, void *End) {
|
||||
At += Amount;
|
||||
}
|
||||
|
||||
/// Read a float value in little-endian order
|
||||
inline void BytecodeReader::read_float(float& FloatVal) {
|
||||
/// FIXME: This is a broken implementation! It reads
|
||||
/// it in a platform-specific endianess. Need to make
|
||||
/// it little endian always.
|
||||
read_data(&FloatVal, &FloatVal+1);
|
||||
}
|
||||
|
||||
/// Read a double value in little-endian order
|
||||
inline void BytecodeReader::read_double(double& DoubleVal) {
|
||||
/// FIXME: This is a broken implementation! It reads
|
||||
/// it in a platform-specific endianess. Need to make
|
||||
/// it little endian always.
|
||||
read_data(&DoubleVal, &DoubleVal+1);
|
||||
}
|
||||
|
||||
/// Read a block header and obtain its type and size
|
||||
inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
|
||||
Type = read_uint();
|
||||
@@ -427,7 +441,7 @@ Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
|
||||
} else {
|
||||
// Create a placeholder for the constant reference and
|
||||
// keep track of the fact that we have a forward ref to recycle it
|
||||
Constant *C = new ConstPHolder(Ty, Slot);
|
||||
Constant *C = new ConstantPlaceHolder(Ty, Slot);
|
||||
|
||||
// Keep track of the fact that we have a forward ref to recycle it
|
||||
ConstantFwdRefs.insert(I, std::make_pair(Key, C));
|
||||
@@ -442,8 +456,8 @@ Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
|
||||
/// As values are created, they are inserted into the appropriate place
|
||||
/// with this method. The ValueTable argument must be one of ModuleValues
|
||||
/// or FunctionValues data members of this class.
|
||||
unsigned BytecodeReader::insertValue(
|
||||
Value *Val, unsigned type, ValueTable &ValueTab) {
|
||||
unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
|
||||
ValueTable &ValueTab) {
|
||||
assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
|
||||
!hasImplicitNull(type) &&
|
||||
"Cannot read null values from bytecode!");
|
||||
@@ -549,7 +563,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
|
||||
|
||||
const Type *InstTy = getSanitizedType(iType);
|
||||
|
||||
// Hae enough to inform the handler now
|
||||
// We have enough info to inform the handler now.
|
||||
if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
|
||||
|
||||
// Declare the resulting instruction we'll build.
|
||||
@@ -999,26 +1013,38 @@ void BytecodeReader::ParseCompactionTypes( unsigned NumEntries ) {
|
||||
/// Parse a compaction table.
|
||||
void BytecodeReader::ParseCompactionTable() {
|
||||
|
||||
// Notify handler that we're beginning a compaction table.
|
||||
if (Handler) Handler->handleCompactionTableBegin();
|
||||
|
||||
/// In LLVM 1.3 Type no longer derives from Value. So,
|
||||
/// we always write them first in the compaction table
|
||||
/// because they can't occupy a "type plane" where the
|
||||
/// Values reside.
|
||||
// In LLVM 1.3 Type no longer derives from Value. So,
|
||||
// we always write them first in the compaction table
|
||||
// because they can't occupy a "type plane" where the
|
||||
// Values reside.
|
||||
if (! hasTypeDerivedFromValue) {
|
||||
unsigned NumEntries = read_vbr_uint();
|
||||
ParseCompactionTypes(NumEntries);
|
||||
}
|
||||
|
||||
// Compaction tables live in separate blocks so we have to loop
|
||||
// until we've read the whole thing.
|
||||
while (moreInBlock()) {
|
||||
// Read the number of Value* entries in the compaction table
|
||||
unsigned NumEntries = read_vbr_uint();
|
||||
unsigned Ty = 0;
|
||||
unsigned isTypeType = false;
|
||||
|
||||
// Decode the type from value read in. Most compaction table
|
||||
// planes will have one or two entries in them. If that's the
|
||||
// case then the length is encoded in the bottom two bits and
|
||||
// the higher bits encode the type. This saves another VBR value.
|
||||
if ((NumEntries & 3) == 3) {
|
||||
// In this case, both low-order bits are set (value 3). This
|
||||
// is a signal that the typeid follows.
|
||||
NumEntries >>= 2;
|
||||
isTypeType = read_typeid(Ty);
|
||||
} else {
|
||||
// In this case, the low-order bits specify the number of entries
|
||||
// and the high order bits specify the type.
|
||||
Ty = NumEntries >> 2;
|
||||
isTypeType = sanitizeTypeId(Ty);
|
||||
NumEntries &= 3;
|
||||
@@ -1029,17 +1055,25 @@ void BytecodeReader::ParseCompactionTable() {
|
||||
if (isTypeType) {
|
||||
ParseCompactionTypes(NumEntries);
|
||||
} else {
|
||||
// Make sure we have enough room for the plane
|
||||
if (Ty >= CompactionValues.size())
|
||||
CompactionValues.resize(Ty+1);
|
||||
|
||||
// Make sure the plane is empty or we have some kind of error
|
||||
if (!CompactionValues[Ty].empty())
|
||||
error("Compaction table plane contains multiple entries!");
|
||||
|
||||
// Notify handler about the plane
|
||||
if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
|
||||
|
||||
// Convert the type slot to a type
|
||||
const Type *Typ = getType(Ty);
|
||||
|
||||
// Push the implicit zero
|
||||
CompactionValues[Ty].push_back(Constant::getNullValue(Typ));
|
||||
|
||||
// Read in each of the entries, put them in the compaction table
|
||||
// and notify the handler that we have a new compaction table value.
|
||||
for (unsigned i = 0; i != NumEntries; ++i) {
|
||||
unsigned ValSlot = read_vbr_uint();
|
||||
Value *V = getGlobalTableValue(Typ, ValSlot);
|
||||
@@ -1048,11 +1082,15 @@ void BytecodeReader::ParseCompactionTable() {
|
||||
}
|
||||
}
|
||||
}
|
||||
// Notify handler that the compaction table is done.
|
||||
if (Handler) Handler->handleCompactionTableEnd();
|
||||
}
|
||||
|
||||
// Parse a single type constant.
|
||||
const Type *BytecodeReader::ParseTypeConstant() {
|
||||
// Parse a single type. The typeid is read in first. If its a primitive type
|
||||
// then nothing else needs to be read, we know how to instantiate it. If its
|
||||
// a derived type, then additional data is read to fill out the type
|
||||
// definition.
|
||||
const Type *BytecodeReader::ParseType() {
|
||||
unsigned PrimType = 0;
|
||||
if (read_typeid(PrimType))
|
||||
error("Invalid type (type type) in type constants!");
|
||||
@@ -1116,7 +1154,7 @@ const Type *BytecodeReader::ParseTypeConstant() {
|
||||
return Result;
|
||||
}
|
||||
|
||||
// ParseTypeConstants - We have to use this weird code to handle recursive
|
||||
// ParseType - We have to use this weird code to handle recursive
|
||||
// types. We know that recursive types will only reference the current slab of
|
||||
// values in the type plane, but they can forward reference types before they
|
||||
// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
|
||||
@@ -1126,7 +1164,7 @@ const Type *BytecodeReader::ParseTypeConstant() {
|
||||
// something and when we reread the type later, we can replace the opaque type
|
||||
// with a new resolved concrete type.
|
||||
//
|
||||
void BytecodeReader::ParseTypeConstants(TypeListTy &Tab, unsigned NumEntries){
|
||||
void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
|
||||
assert(Tab.size() == 0 && "should not have read type constants in before!");
|
||||
|
||||
// Insert a bunch of opaque types to be resolved later...
|
||||
@@ -1138,7 +1176,7 @@ void BytecodeReader::ParseTypeConstants(TypeListTy &Tab, unsigned NumEntries){
|
||||
// opaque types just inserted.
|
||||
//
|
||||
for (unsigned i = 0; i != NumEntries; ++i) {
|
||||
const Type* NewTy = ParseTypeConstant();
|
||||
const Type* NewTy = ParseType();
|
||||
const Type* OldTy = Tab[i].get();
|
||||
if (NewTy == 0)
|
||||
error("Couldn't parse type!");
|
||||
@@ -1185,7 +1223,9 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
|
||||
|
||||
// Construct a ConstantExpr of the appropriate kind
|
||||
if (isExprNumArgs == 1) { // All one-operand expressions
|
||||
assert(Opcode == Instruction::Cast);
|
||||
if (Opcode != Instruction::Cast)
|
||||
error("Only Cast instruction has one argument for ConstantExpr");
|
||||
|
||||
Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
|
||||
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
|
||||
return Result;
|
||||
@@ -1209,7 +1249,8 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
|
||||
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
|
||||
return Result;
|
||||
} else if (Opcode == Instruction::Select) {
|
||||
assert(ArgVec.size() == 3);
|
||||
if (ArgVec.size() != 3)
|
||||
error("Select instruction must have three arguments.");
|
||||
Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
|
||||
ArgVec[2]);
|
||||
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
|
||||
@@ -1263,16 +1304,16 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
|
||||
}
|
||||
|
||||
case Type::FloatTyID: {
|
||||
float F;
|
||||
read_data(&F, &F+1);
|
||||
Constant* Result = ConstantFP::get(Ty, F);
|
||||
float Val;
|
||||
read_float(Val);
|
||||
Constant* Result = ConstantFP::get(Ty, Val);
|
||||
if (Handler) Handler->handleConstantValue(Result);
|
||||
return Result;
|
||||
}
|
||||
|
||||
case Type::DoubleTyID: {
|
||||
double Val;
|
||||
read_data(&Val, &Val+1);
|
||||
read_double(Val);
|
||||
Constant* Result = ConstantFP::get(Ty, Val);
|
||||
if (Handler) Handler->handleConstantValue(Result);
|
||||
return Result;
|
||||
@@ -1394,7 +1435,7 @@ void BytecodeReader::ParseConstantPool(ValueTable &Tab,
|
||||
/// first in the constant pool.
|
||||
if (isFunction && !hasTypeDerivedFromValue) {
|
||||
unsigned NumEntries = read_vbr_uint();
|
||||
ParseTypeConstants(TypeTab, NumEntries);
|
||||
ParseTypes(TypeTab, NumEntries);
|
||||
}
|
||||
|
||||
while (moreInBlock()) {
|
||||
@@ -1406,7 +1447,7 @@ void BytecodeReader::ParseConstantPool(ValueTable &Tab,
|
||||
/// bytecode file in the "Type Type" plane (#12).
|
||||
/// In 1.3 plane 12 is now the label plane. Handle this here.
|
||||
if (isTypeType) {
|
||||
ParseTypeConstants(TypeTab, NumEntries);
|
||||
ParseTypes(TypeTab, NumEntries);
|
||||
} else if (Typ == Type::VoidTyID) {
|
||||
/// Use of Type::VoidTyID is a misnomer. It actually means
|
||||
/// that the following plane is constant strings
|
||||
@@ -1652,7 +1693,7 @@ void BytecodeReader::ParseGlobalTypes() {
|
||||
if (hasTypeDerivedFromValue)
|
||||
read_vbr_uint();
|
||||
|
||||
ParseTypeConstants(ModuleTypes, NumEntries);
|
||||
ParseTypes(ModuleTypes, NumEntries);
|
||||
}
|
||||
|
||||
/// Parse the Global info (types, global vars, constants)
|
||||
@@ -1908,8 +1949,7 @@ void BytecodeReader::ParseModule() {
|
||||
|
||||
/// This function completely parses a bytecode buffer given by the \p Buf
|
||||
/// and \p Length parameters.
|
||||
void BytecodeReader::ParseBytecode(
|
||||
BufPtr Buf, unsigned Length,
|
||||
void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
|
||||
const std::string &ModuleID,
|
||||
bool processFunctions) {
|
||||
|
||||
|
Reference in New Issue
Block a user