While calculating upper loop bound for first loop and lower loop bound for second loop, take care of edge cases.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41387 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Devang Patel 2007-08-25 00:56:38 +00:00
parent 7df31dc89b
commit 4a69da9cb0
2 changed files with 283 additions and 36 deletions

View File

@ -58,7 +58,8 @@ namespace {
class SplitInfo {
public:
SplitInfo() : SplitValue(NULL), SplitCondition(NULL),
UseTrueBranchFirst(true) {}
UseTrueBranchFirst(true), A_ExitValue(NULL),
B_StartValue(NULL) {}
// Induction variable's range is split at this value.
Value *SplitValue;
@ -69,11 +70,20 @@ namespace {
// True if after loop index split, first loop will execute split condition's
// true branch.
bool UseTrueBranchFirst;
// Exit value for first loop after loop split.
Value *A_ExitValue;
// Start value for second loop after loop split.
Value *B_StartValue;
// Clear split info.
void clear() {
SplitValue = NULL;
SplitCondition = NULL;
UseTrueBranchFirst = true;
A_ExitValue = NULL;
B_StartValue = NULL;
}
};
@ -112,6 +122,10 @@ namespace {
/// split loop using given split condition.
bool safeSplitCondition(SplitInfo &SD);
/// calculateLoopBounds - ALoop exit value and BLoop start values are calculated
/// based on split value.
void calculateLoopBounds(SplitInfo &SD);
/// splitLoop - Split current loop L in two loops using split information
/// SD. Update dominator information. Maintain LCSSA form.
bool splitLoop(SplitInfo &SD);
@ -295,7 +309,14 @@ void LoopIndexSplit::findLoopConditionals() {
ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
if (!CI)
return;
// FIXME
if (CI->getPredicate() == ICmpInst::ICMP_SGT
|| CI->getPredicate() == ICmpInst::ICMP_UGT
|| CI->getPredicate() == ICmpInst::ICMP_SGE
|| CI->getPredicate() == ICmpInst::ICMP_UGE)
return;
ExitCondition = CI;
// Exit condition's one operand is loop invariant exit value and second
@ -747,6 +768,207 @@ bool LoopIndexSplit::safeSplitCondition(SplitInfo &SD) {
return false;
}
/// calculateLoopBounds - ALoop exit value and BLoop start values are calculated
/// based on split value.
void LoopIndexSplit::calculateLoopBounds(SplitInfo &SD) {
ICmpInst::Predicate SP = SD.SplitCondition->getPredicate();
const Type *Ty = SD.SplitValue->getType();
bool Sign = ExitCondition->isSignedPredicate();
BasicBlock *Preheader = L->getLoopPreheader();
Instruction *PHTerminator = Preheader->getTerminator();
// Initially use split value as upper loop bound for first loop and lower loop
// bound for second loop.
Value *AEV = SD.SplitValue;
Value *BSV = SD.SplitValue;
switch (ExitCondition->getPredicate()) {
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE:
default:
assert (0 && "Unexpected exit condition predicate");
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT:
{
switch (SP) {
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT:
//
// for (i = LB; i < UB; ++i) { if (i < SV) A; else B; }
//
// is transformed into
// AEV = BSV = SV
// for (i = LB; i < min(UB, AEV); ++i)
// A;
// for (i = max(LB, BSV); i < UB; ++i);
// B;
break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE:
{
//
// for (i = LB; i < UB; ++i) { if (i <= SV) A; else B; }
//
// is transformed into
//
// AEV = SV + 1
// BSV = SV + 1
// for (i = LB; i < min(UB, AEV); ++i)
// A;
// for (i = max(LB, BSV); i < UB; ++i)
// B;
BSV = BinaryOperator::createAdd(SD.SplitValue,
ConstantInt::get(Ty, 1, Sign),
"lsplit.add", PHTerminator);
AEV = BSV;
}
break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE:
//
// for (i = LB; i < UB; ++i) { if (i >= SV) A; else B; }
//
// is transformed into
// AEV = BSV = SV
// for (i = LB; i < min(UB, AEV); ++i)
// B;
// for (i = max(BSV, LB); i < UB; ++i)
// A;
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT:
{
//
// for (i = LB; i < UB; ++i) { if (i > SV) A; else B; }
//
// is transformed into
//
// BSV = AEV = SV + 1
// for (i = LB; i < min(UB, AEV); ++i)
// B;
// for (i = max(LB, BSV); i < UB; ++i)
// A;
BSV = BinaryOperator::createAdd(SD.SplitValue,
ConstantInt::get(Ty, 1, Sign),
"lsplit.add", PHTerminator);
AEV = BSV;
}
break;
default:
assert (0 && "Unexpected split condition predicate");
break;
} // end switch (SP)
}
break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE:
{
switch (SP) {
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT:
//
// for (i = LB; i <= UB; ++i) { if (i < SV) A; else B; }
//
// is transformed into
// AEV = SV - 1;
// BSV = SV;
// for (i = LB; i <= min(UB, AEV); ++i)
// A;
// for (i = max(LB, BSV); i <= UB; ++i)
// B;
AEV = BinaryOperator::createSub(SD.SplitValue,
ConstantInt::get(Ty, 1, Sign),
"lsplit.sub", PHTerminator);
break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE:
//
// for (i = LB; i <= UB; ++i) { if (i <= SV) A; else B; }
//
// is transformed into
// AEV = SV;
// BSV = SV + 1;
// for (i = LB; i <= min(UB, AEV); ++i)
// A;
// for (i = max(LB, BSV); i <= UB; ++i)
// B;
BSV = BinaryOperator::createAdd(SD.SplitValue,
ConstantInt::get(Ty, 1, Sign),
"lsplit.add", PHTerminator);
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT:
//
// for (i = LB; i <= UB; ++i) { if (i > SV) A; else B; }
//
// is transformed into
// AEV = SV;
// BSV = SV + 1;
// for (i = LB; i <= min(AEV, UB); ++i)
// B;
// for (i = max(LB, BSV); i <= UB; ++i)
// A;
BSV = BinaryOperator::createAdd(SD.SplitValue,
ConstantInt::get(Ty, 1, Sign),
"lsplit.add", PHTerminator);
break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE:
// ** TODO **
//
// for (i = LB; i <= UB; ++i) { if (i >= SV) A; else B; }
//
// is transformed into
// AEV = SV - 1;
// BSV = SV;
// for (i = LB; i <= min(AEV, UB); ++i)
// B;
// for (i = max(LB, BSV); i <= UB; ++i)
// A;
AEV = BinaryOperator::createSub(SD.SplitValue,
ConstantInt::get(Ty, 1, Sign),
"lsplit.sub", PHTerminator);
break;
default:
assert (0 && "Unexpected split condition predicate");
break;
} // end switch (SP)
}
break;
}
// Calculate ALoop induction variable's new exiting value and
// BLoop induction variable's new starting value. Calculuate these
// values in original loop's preheader.
// A_ExitValue = min(SplitValue, OrignalLoopExitValue)
// B_StartValue = max(SplitValue, OriginalLoopStartValue)
if (isa<ConstantInt>(SD.SplitValue)) {
SD.A_ExitValue = AEV;
SD.B_StartValue = BSV;
return;
}
Value *C1 = new ICmpInst(Sign ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
AEV,
ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", PHTerminator);
SD.A_ExitValue = new SelectInst(C1, AEV,
ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", PHTerminator);
Value *C2 = new ICmpInst(Sign ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
BSV, StartValue, "lsplit.sv",
PHTerminator);
SD.B_StartValue = new SelectInst(C2, StartValue, BSV,
"lsplit.sv", PHTerminator);
}
/// splitLoop - Split current loop L in two loops using split information
/// SD. Update dominator information. Maintain LCSSA form.
bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
@ -762,38 +984,11 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
//
// ALoop's exit edge enters BLoop's header through a forwarding block which
// acts as a BLoop's preheader.
BasicBlock *Preheader = L->getLoopPreheader();
//[*] Calculate ALoop induction variable's new exiting value and
// BLoop induction variable's new starting value. Calculuate these
// values in original loop's preheader.
// A_ExitValue = min(SplitValue, OrignalLoopExitValue)
// B_StartValue = max(SplitValue, OriginalLoopStartValue)
Value *A_ExitValue = NULL;
Value *B_StartValue = NULL;
if (isa<ConstantInt>(SD.SplitValue)) {
A_ExitValue = SD.SplitValue;
B_StartValue = SD.SplitValue;
}
else {
BasicBlock *Preheader = L->getLoopPreheader();
Instruction *PHTerminator = Preheader->getTerminator();
bool SignedPredicate = ExitCondition->isSignedPredicate();
Value *C1 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue,
ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", PHTerminator);
A_ExitValue = new SelectInst(C1, SD.SplitValue,
ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", PHTerminator);
Value *C2 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, StartValue, "lsplit.sv",
PHTerminator);
B_StartValue = new SelectInst(C2, StartValue, SD.SplitValue,
"lsplit.sv", PHTerminator);
}
// Calculate ALoop induction variable's new exiting value and
// BLoop induction variable's new starting value.
calculateLoopBounds(SD);
//[*] Clone loop.
DenseMap<const Value *, Value *> ValueMap;
@ -815,7 +1010,7 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
A_ExitInsn->setSuccessor(1, B_Header);
//[*] Update ALoop's exit value using new exit value.
ExitCondition->setOperand(ExitValueNum, A_ExitValue);
ExitCondition->setOperand(ExitValueNum, SD.A_ExitValue);
// [*] Update BLoop's header phi nodes. Remove incoming PHINode's from
// original loop's preheader. Add incoming PHINode values from
@ -831,7 +1026,7 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
} else
break;
}
BasicBlock *Preheader = L->getLoopPreheader();
for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
@ -840,7 +1035,7 @@ bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
// Add incoming value from A_ExitingBlock.
if (PN == B_IndVar)
PN->addIncoming(B_StartValue, A_ExitingBlock);
PN->addIncoming(SD.B_StartValue, A_ExitingBlock);
else {
PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
Value *V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock);

View File

@ -0,0 +1,52 @@
; Split loop. Save last value. Split value is off by one in this example.
; RUN: llvm-as < %s | opt -loop-index-split -disable-output -stats |& \
; RUN: grep "loop-index-split" | count 1
@k = external global i32 ; <i32*> [#uses=2]
define void @foobar(i32 %a, i32 %b) {
entry:
br label %bb
bb: ; preds = %cond_next16, %entry
%i.01.0 = phi i32 [ 0, %entry ], [ %tmp18, %cond_next16 ] ; <i32> [#uses=5]
%tsum.18.0 = phi i32 [ 42, %entry ], [ %tsum.013.1, %cond_next16 ] ; <i32> [#uses=3]
%tmp1 = icmp sgt i32 %i.01.0, 50 ; <i1> [#uses=1]
br i1 %tmp1, label %cond_true, label %cond_false
cond_true: ; preds = %bb
%tmp4 = tail call i32 @foo( i32 %i.01.0 ) ; <i32> [#uses=1]
%tmp6 = add i32 %tmp4, %tsum.18.0 ; <i32> [#uses=2]
%tmp914 = load i32* @k, align 4 ; <i32> [#uses=1]
%tmp1015 = icmp eq i32 %tmp914, 0 ; <i1> [#uses=1]
br i1 %tmp1015, label %cond_next16, label %cond_true13
cond_false: ; preds = %bb
%tmp8 = tail call i32 @bar( i32 %i.01.0 ) ; <i32> [#uses=0]
%tmp9 = load i32* @k, align 4 ; <i32> [#uses=1]
%tmp10 = icmp eq i32 %tmp9, 0 ; <i1> [#uses=1]
br i1 %tmp10, label %cond_next16, label %cond_true13
cond_true13: ; preds = %cond_false, %cond_true
%tsum.013.0 = phi i32 [ %tmp6, %cond_true ], [ %tsum.18.0, %cond_false ] ; <i32> [#uses=1]
%tmp15 = tail call i32 @bar( i32 %i.01.0 ) ; <i32> [#uses=0]
br label %cond_next16
cond_next16: ; preds = %cond_false, %cond_true, %cond_true13
%tsum.013.1 = phi i32 [ %tsum.013.0, %cond_true13 ], [ %tmp6, %cond_true ], [ %tsum.18.0, %cond_false ] ; <i32> [#uses=2]
%tmp18 = add i32 %i.01.0, 1 ; <i32> [#uses=3]
%tmp21 = icmp slt i32 %tmp18, 100 ; <i1> [#uses=1]
br i1 %tmp21, label %bb, label %bb24
bb24: ; preds = %cond_next16
%tmp18.lcssa = phi i32 [ %tmp18, %cond_next16 ] ; <i32> [#uses=1]
%tsum.013.1.lcssa = phi i32 [ %tsum.013.1, %cond_next16 ] ; <i32> [#uses=1]
%tmp27 = tail call i32 @t( i32 %tmp18.lcssa, i32 %tsum.013.1.lcssa ) ; <i32> [#uses=0]
ret void
}
declare i32 @foo(i32)
declare i32 @bar(i32)
declare i32 @t(i32, i32)