Revert r111375, "move gep decomposition out of ValueTracking into BasicAA. The

form of", it doesn't pass tests.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111385 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Daniel Dunbar 2010-08-18 18:43:08 +00:00
parent 3d7ff08c82
commit 4ae56d725d
3 changed files with 241 additions and 213 deletions

View File

@ -77,6 +77,25 @@ namespace llvm {
///
bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose
/// it into a base pointer with a constant offset and a number of scaled
/// symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed
/// form.
///
/// When TargetData is around, this function is capable of analyzing
/// everything that Value::getUnderlyingObject() can look through. When not,
/// it just looks through pointer casts.
///
const Value *DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
const TargetData *TD);
/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if

View File

@ -30,7 +30,6 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include <algorithm>
using namespace llvm;
@ -193,218 +192,6 @@ INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa",
ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//
/// GetLinearExpression - Analyze the specified value as a linear expression:
/// "A*V + B", where A and B are constant integers. Return the scale and offset
/// values as APInts and return V as a Value*. The incoming Value is known to
/// have IntegerType. Note that this looks through extends, so the high bits
/// may not be represented in the result.
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
const TargetData *TD, unsigned Depth) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
if (Depth == 6) {
Scale = 1;
Offset = 0;
return V;
}
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
switch (BOp->getOpcode()) {
default: break;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
break;
// FALL THROUGH.
case Instruction::Add:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
Offset += RHSC->getValue();
return V;
case Instruction::Mul:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
Offset *= RHSC->getValue();
Scale *= RHSC->getValue();
return V;
case Instruction::Shl:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
Offset <<= RHSC->getValue().getLimitedValue();
Scale <<= RHSC->getValue().getLimitedValue();
return V;
}
}
}
// Since GEP indices are sign extended anyway, we don't care about the high
// bits of a sign extended value - just scales and offsets.
if (isa<SExtInst>(V)) {
Value *CastOp = cast<CastInst>(V)->getOperand(0);
unsigned OldWidth = Scale.getBitWidth();
unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
Scale.trunc(SmallWidth);
Offset.trunc(SmallWidth);
Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1);
Scale.zext(OldWidth);
Offset.zext(OldWidth);
return Result;
}
Scale = 1;
Offset = 0;
return V;
}
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
/// into a base pointer with a constant offset and a number of scaled symbolic
/// offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
/// the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As such,
/// the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When TargetData is around, this function is capable of analyzing everything
/// that Value::getUnderlyingObject() can look through. When not, it just looks
/// through pointer casts.
///
static const Value *
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
const TargetData *TD) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = 6;
BaseOffs = 0;
do {
// Look through global aliases and bitcasts.
V = V->stripPointerCasts();
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(V);
if (GEPOp == 0)
return V;
// Don't attempt to analyze GEPs over unsized objects.
if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
->getElementType()->isSized())
return V;
// If we are lacking TargetData information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
if (!TD) {
if (!GEPOp->hasAllZeroIndices())
return V;
V = GEPOp->getOperand(0);
continue;
}
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
for (User::const_op_iterator I = GEPOp->op_begin()+1,
E = GEPOp->op_end(); I != E; ++I) {
Value *Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0) continue;
BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero()) continue;
BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
continue;
}
uint64_t Scale = TD->getTypeAllocSize(*GTI);
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
BaseOffs += IndexOffset.getZExtValue()*Scale;
Scale *= IndexScale.getZExtValue();
// If we already had an occurrance of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
if (VarIndices[i].first == Index) {
Scale += VarIndices[i].second;
VarIndices.erase(VarIndices.begin()+i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
Scale <<= ShiftBits;
Scale >>= ShiftBits;
}
if (Scale)
VarIndices.push_back(std::make_pair(Index, Scale));
}
// Analyze the base pointer next.
V = GEPOp->getOperand(0);
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
return V;
}
/// GetIndexDifference - Dest and Src are the variable indices from two
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
/// difference between the two pointers.
static void GetIndexDifference(
SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
if (Src.empty()) return;
for (unsigned i = 0, e = Src.size(); i != e; ++i) {
const Value *V = Src[i].first;
int64_t Scale = Src[i].second;
// Find V in Dest. This is N^2, but pointer indices almost never have more
// than a few variable indexes.
for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
if (Dest[j].first != V) continue;
// If we found it, subtract off Scale V's from the entry in Dest. If it
// goes to zero, remove the entry.
if (Dest[j].second != Scale)
Dest[j].second -= Scale;
else
Dest.erase(Dest.begin()+j);
Scale = 0;
break;
}
// If we didn't consume this entry, add it to the end of the Dest list.
if (Scale)
Dest.push_back(std::make_pair(V, -Scale));
}
}
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//
@ -680,6 +467,40 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
}
/// GetIndexDifference - Dest and Src are the variable indices from two
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
/// difference between the two pointers.
static void GetIndexDifference(
SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
if (Src.empty()) return;
for (unsigned i = 0, e = Src.size(); i != e; ++i) {
const Value *V = Src[i].first;
int64_t Scale = Src[i].second;
// Find V in Dest. This is N^2, but pointer indices almost never have more
// than a few variable indexes.
for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
if (Dest[j].first != V) continue;
// If we found it, subtract off Scale V's from the entry in Dest. If it
// goes to zero, remove the entry.
if (Dest[j].second != Scale)
Dest[j].second -= Scale;
else
Dest.erase(Dest.begin()+j);
Scale = 0;
break;
}
// If we didn't consume this entry, add it to the end of the Dest list.
if (Scale)
Dest.push_back(std::make_pair(V, -Scale));
}
}
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer. We know that V1 is a GEP, but we don't know
/// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(),

View File

@ -974,6 +974,194 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
}
/// GetLinearExpression - Analyze the specified value as a linear expression:
/// "A*V + B", where A and B are constant integers. Return the scale and offset
/// values as APInts and return V as a Value*. The incoming Value is known to
/// have IntegerType. Note that this looks through extends, so the high bits
/// may not be represented in the result.
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
const TargetData *TD, unsigned Depth) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
if (Depth == 6) {
Scale = 1;
Offset = 0;
return V;
}
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
switch (BOp->getOpcode()) {
default: break;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
break;
// FALL THROUGH.
case Instruction::Add:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
Offset += RHSC->getValue();
return V;
case Instruction::Mul:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
Offset *= RHSC->getValue();
Scale *= RHSC->getValue();
return V;
case Instruction::Shl:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
Offset <<= RHSC->getValue().getLimitedValue();
Scale <<= RHSC->getValue().getLimitedValue();
return V;
}
}
}
// Since GEP indices are sign extended anyway, we don't care about the high
// bits of a sign extended value - just scales and offsets.
if (isa<SExtInst>(V)) {
Value *CastOp = cast<CastInst>(V)->getOperand(0);
unsigned OldWidth = Scale.getBitWidth();
unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
Scale.trunc(SmallWidth);
Offset.trunc(SmallWidth);
Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1);
Scale.zext(OldWidth);
Offset.zext(OldWidth);
return Result;
}
Scale = 1;
Offset = 0;
return V;
}
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
/// into a base pointer with a constant offset and a number of scaled symbolic
/// offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
/// the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As such,
/// the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When TargetData is around, this function is capable of analyzing everything
/// that Value::getUnderlyingObject() can look through. When not, it just looks
/// through pointer casts.
///
const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
const TargetData *TD) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = 6;
BaseOffs = 0;
do {
// See if this is a bitcast or GEP.
const Operator *Op = dyn_cast<Operator>(V);
if (Op == 0) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->mayBeOverridden()) {
V = GA->getAliasee();
continue;
}
}
return V;
}
if (Op->getOpcode() == Instruction::BitCast) {
V = Op->getOperand(0);
continue;
}
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
if (GEPOp == 0)
return V;
// Don't attempt to analyze GEPs over unsized objects.
if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
->getElementType()->isSized())
return V;
// If we are lacking TargetData information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
if (!TD) {
if (!GEPOp->hasAllZeroIndices())
return V;
V = GEPOp->getOperand(0);
continue;
}
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
for (User::const_op_iterator I = GEPOp->op_begin()+1,
E = GEPOp->op_end(); I != E; ++I) {
Value *Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0) continue;
BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero()) continue;
BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
continue;
}
uint64_t Scale = TD->getTypeAllocSize(*GTI);
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
BaseOffs += IndexOffset.getZExtValue()*Scale;
Scale *= IndexScale.getZExtValue();
// If we already had an occurrance of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
if (VarIndices[i].first == Index) {
Scale += VarIndices[i].second;
VarIndices.erase(VarIndices.begin()+i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
Scale <<= ShiftBits;
Scale >>= ShiftBits;
}
if (Scale)
VarIndices.push_back(std::make_pair(Index, Scale));
}
// Analyze the base pointer next.
V = GEPOp->getOperand(0);
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
return V;
}
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of