Layout each section independently. With the testcase in PR8711:

before:
        4 assembler - Number of assembler layout and relaxation steps
    78563 assembler - Number of emitted assembler fragments
  8693904 assembler - Number of emitted object file bytes
   271223 assembler - Number of evaluated fixups
330771677 assembler - Number of fragment layouts
     5958 assembler - Number of relaxed instructions
  2508361 mcexpr    - Number of MCExpr evaluations

real	0m26.123s
user	0m25.694s
sys	0m0.388s

after:

      4 assembler - Number of assembler layout and relaxation steps
  78563 assembler - Number of emitted assembler fragments
8693904 assembler - Number of emitted object file bytes
 271223 assembler - Number of evaluated fixups
 231507 assembler - Number of fragment layouts
   5958 assembler - Number of relaxed instructions
2508361 mcexpr    - Number of MCExpr evaluations

real	0m2.500s
user	0m2.113s
sys	0m0.273s

And yes, the outputs are identical :-)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121207 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola 2010-12-07 23:32:26 +00:00
parent 2bf315f087
commit 4f4363a490
3 changed files with 25 additions and 65 deletions

View File

@ -39,13 +39,12 @@ private:
/// The last fragment which was layed out, or 0 if nothing has been layed
/// out. Fragments are always layed out in order, so all fragments with a
/// lower ordinal will be up to date.
mutable MCFragment *LastValidFragment;
mutable DenseMap<const MCSectionData*, MCFragment *> LastValidFragment;
/// \brief Make sure that the layout for the given fragment is valid, lazily
/// computing it if necessary.
void EnsureValid(const MCFragment *F) const;
bool isSectionUpToDate(const MCSectionData *SD) const;
bool isFragmentUpToDate(const MCFragment *F) const;
public:
@ -58,9 +57,6 @@ public:
/// fragments size should have already been updated.
void Invalidate(MCFragment *F);
/// \brief Perform a full layout.
void LayoutFile();
/// \brief Perform layout for a single fragment, assuming that the previous
/// fragment has already been layed out correctly, and the parent section has
/// been initialized.

View File

@ -78,8 +78,7 @@ private:
/// initialized.
uint64_t EffectiveSize;
/// LayoutOrder - The global layout order of this fragment. This is the index
/// across all fragments in the file, not just within the section.
/// LayoutOrder - The layout order of this fragment.
unsigned LayoutOrder;
/// @}

View File

@ -49,7 +49,7 @@ STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
/* *** */
MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
: Assembler(Asm), LastValidFragment(0)
: Assembler(Asm), LastValidFragment()
{
// Compute the section layout order. Virtual sections must go last.
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
@ -60,21 +60,13 @@ MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
SectionOrder.push_back(&*it);
}
bool MCAsmLayout::isSectionUpToDate(const MCSectionData *SD) const {
// The first section is always up-to-date.
unsigned Index = SD->getLayoutOrder();
if (!Index)
return true;
// Otherwise, sections are always implicitly computed when the preceeding
// fragment is layed out.
const MCSectionData *Prev = getSectionOrder()[Index - 1];
return isFragmentUpToDate(&(Prev->getFragmentList().back()));
}
bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
return (LastValidFragment &&
F->getLayoutOrder() <= LastValidFragment->getLayoutOrder());
const MCSectionData &SD = *F->getParent();
const MCFragment *LastValid = LastValidFragment.lookup(&SD);
if (!LastValid)
return false;
assert(LastValid->getParent() == F->getParent());
return F->getLayoutOrder() <= LastValid->getLayoutOrder();
}
void MCAsmLayout::Invalidate(MCFragment *F) {
@ -84,31 +76,23 @@ void MCAsmLayout::Invalidate(MCFragment *F) {
// Otherwise, reset the last valid fragment to the predecessor of the
// invalidated fragment.
LastValidFragment = F->getPrevNode();
if (!LastValidFragment) {
unsigned Index = F->getParent()->getLayoutOrder();
if (Index != 0) {
MCSectionData *Prev = getSectionOrder()[Index - 1];
LastValidFragment = &(Prev->getFragmentList().back());
}
}
const MCSectionData &SD = *F->getParent();
LastValidFragment[&SD] = F->getPrevNode();
}
void MCAsmLayout::EnsureValid(const MCFragment *F) const {
MCSectionData &SD = *F->getParent();
MCFragment *Cur = LastValidFragment[&SD];
if (!Cur)
Cur = &*SD.begin();
else
Cur = Cur->getNextNode();
// Advance the layout position until the fragment is up-to-date.
while (!isFragmentUpToDate(F)) {
// Advance to the next fragment.
MCFragment *Cur = LastValidFragment;
if (Cur)
Cur = Cur->getNextNode();
if (!Cur) {
unsigned NextIndex = 0;
if (LastValidFragment)
NextIndex = LastValidFragment->getParent()->getLayoutOrder() + 1;
Cur = SectionOrder[NextIndex]->begin();
}
const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
Cur = Cur->getNextNode();
}
}
@ -311,21 +295,11 @@ uint64_t MCAssembler::ComputeFragmentSize(const MCFragment &F,
return 0;
}
void MCAsmLayout::LayoutFile() {
// Initialize the first section and set the valid fragment layout point. All
// actual layout computations are done lazily.
LastValidFragment = 0;
}
void MCAsmLayout::LayoutFragment(MCFragment *F) {
MCFragment *Prev = F->getPrevNode();
// We should never try to recompute something which is up-to-date.
assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
// We should never try to compute the fragment layout if the section isn't
// up-to-date.
assert(isSectionUpToDate(F->getParent()) &&
"Attempt to compute fragment before it's section!");
// We should never try to compute the fragment layout if it's predecessor
// isn't up-to-date.
assert((!Prev || isFragmentUpToDate(Prev)) &&
@ -340,7 +314,7 @@ void MCAsmLayout::LayoutFragment(MCFragment *F) {
F->Offset = Offset;
F->EffectiveSize = getAssembler().ComputeFragmentSize(*F, F->Offset);
LastValidFragment = F;
LastValidFragment[F->getParent()] = F;
}
/// WriteFragmentData - Write the \arg F data to the output file.
@ -541,11 +515,11 @@ void MCAssembler::Finish(MCObjectWriter *Writer) {
}
// Assign layout order indices to sections and fragments.
unsigned FragmentIndex = 0;
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
MCSectionData *SD = Layout.getSectionOrder()[i];
SD->setLayoutOrder(i);
unsigned FragmentIndex = 0;
for (MCSectionData::iterator it2 = SD->begin(),
ie2 = SD->end(); it2 != ie2; ++it2)
it2->setLayoutOrder(FragmentIndex++);
@ -743,9 +717,6 @@ bool MCAssembler::LayoutOnce(const MCObjectWriter &Writer,
MCAsmLayout &Layout) {
++stats::RelaxationSteps;
// Layout the sections in order.
Layout.LayoutFile();
// Scan for fragments that need relaxation.
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
@ -784,16 +755,10 @@ bool MCAssembler::LayoutOnce(const MCObjectWriter &Writer,
}
void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
// Lower out any instruction fragments, to simplify the fixup application and
// output.
//
// FIXME-PERF: We don't have to do this, but the assumption is that it is
// cheap (we will mostly end up eliminating fragments and appending on to data
// fragments), so the extra complexity downstream isn't worth it. Evaluate
// this assumption.
// The layout is done. Mark every fragment as valid.
Layout.getFragmentOffset(&*Layout.getSectionOrder().back()->rbegin());
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
}
}
// Debugging methods