mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
Thread LLVMContext through the constant folding APIs, which touches a lot of files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74844 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
e034393b15
commit
508955156a
@ -22,18 +22,20 @@ namespace llvm {
|
||||
class TargetData;
|
||||
class Function;
|
||||
class Type;
|
||||
class LLVMContext;
|
||||
|
||||
/// ConstantFoldInstruction - Attempt to constant fold the specified
|
||||
/// instruction. If successful, the constant result is returned, if not, null
|
||||
/// is returned. Note that this function can only fail when attempting to fold
|
||||
/// instructions like loads and stores, which have no constant expression form.
|
||||
///
|
||||
Constant *ConstantFoldInstruction(Instruction *I, const TargetData *TD = 0);
|
||||
Constant *ConstantFoldInstruction(Instruction *I, LLVMContext* Context,
|
||||
const TargetData *TD = 0);
|
||||
|
||||
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
|
||||
/// using the specified TargetData. If successful, the constant result is
|
||||
/// result is returned, if not, null is returned.
|
||||
Constant *ConstantFoldConstantExpression(ConstantExpr *CE,
|
||||
Constant *ConstantFoldConstantExpression(ConstantExpr *CE, LLVMContext* Context,
|
||||
const TargetData *TD = 0);
|
||||
|
||||
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
|
||||
@ -44,6 +46,7 @@ Constant *ConstantFoldConstantExpression(ConstantExpr *CE,
|
||||
///
|
||||
Constant *ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
Constant*const * Ops, unsigned NumOps,
|
||||
LLVMContext* Context,
|
||||
const TargetData *TD = 0);
|
||||
|
||||
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
|
||||
@ -52,13 +55,15 @@ Constant *ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
///
|
||||
Constant *ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
Constant*const * Ops, unsigned NumOps,
|
||||
LLVMContext* Context,
|
||||
const TargetData *TD = 0);
|
||||
|
||||
|
||||
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
|
||||
/// getelementptr constantexpr, return the constant value being addressed by the
|
||||
/// constant expression, or null if something is funny and we can't decide.
|
||||
Constant *ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE);
|
||||
Constant *ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE,
|
||||
LLVMContext* Context);
|
||||
|
||||
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
|
||||
/// the specified function.
|
||||
|
@ -36,6 +36,7 @@ namespace llvm {
|
||||
class Type;
|
||||
class ScalarEvolution;
|
||||
class TargetData;
|
||||
class LLVMContext;
|
||||
|
||||
/// SCEV - This class represents an analyzed expression in the program. These
|
||||
/// are opaque objects that the client is not allowed to do much with
|
||||
@ -354,6 +355,8 @@ namespace llvm {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
ScalarEvolution();
|
||||
|
||||
LLVMContext* getContext() const { return Context; }
|
||||
|
||||
/// isSCEVable - Test if values of the given type are analyzable within
|
||||
/// the SCEV framework. This primarily includes integer types, and it
|
||||
/// can optionally include pointer types if the ScalarEvolution class
|
||||
|
@ -37,7 +37,7 @@ namespace llvm {
|
||||
friend struct SCEVVisitor<SCEVExpander, Value*>;
|
||||
public:
|
||||
explicit SCEVExpander(ScalarEvolution &se)
|
||||
: SE(se), Builder(TargetFolder(se.TD)) {}
|
||||
: SE(se), Builder(TargetFolder(se.TD, se.getContext())) {}
|
||||
|
||||
/// clear - Erase the contents of the InsertedExpressions map so that users
|
||||
/// trying to expand the same expression into multiple BasicBlocks or
|
||||
|
@ -25,21 +25,24 @@
|
||||
namespace llvm {
|
||||
|
||||
class TargetData;
|
||||
class LLVMContext;
|
||||
|
||||
/// TargetFolder - Create constants with target dependent folding.
|
||||
class TargetFolder {
|
||||
const TargetData *TD;
|
||||
LLVMContext* Context;
|
||||
|
||||
/// Fold - Fold the constant using target specific information.
|
||||
Constant *Fold(Constant *C) const {
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
||||
if (Constant *CF = ConstantFoldConstantExpression(CE, TD))
|
||||
if (Constant *CF = ConstantFoldConstantExpression(CE, Context, TD))
|
||||
return CF;
|
||||
return C;
|
||||
}
|
||||
|
||||
public:
|
||||
explicit TargetFolder(const TargetData *TheTD) : TD(TheTD) {}
|
||||
explicit TargetFolder(const TargetData *TheTD, LLVMContext* C) :
|
||||
TD(TheTD), Context(C) {}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Binary Operators
|
||||
|
@ -22,6 +22,7 @@
|
||||
#include "llvm/GlobalVariable.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/IntrinsicInst.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
@ -394,13 +395,13 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
|
||||
// the base pointers.
|
||||
while (isGEP(GEP1->getOperand(0)) &&
|
||||
GEP1->getOperand(1) ==
|
||||
Constant::getNullValue(GEP1->getOperand(1)->getType()))
|
||||
Context->getNullValue(GEP1->getOperand(1)->getType()))
|
||||
GEP1 = cast<User>(GEP1->getOperand(0));
|
||||
const Value *BasePtr1 = GEP1->getOperand(0);
|
||||
|
||||
while (isGEP(GEP2->getOperand(0)) &&
|
||||
GEP2->getOperand(1) ==
|
||||
Constant::getNullValue(GEP2->getOperand(1)->getType()))
|
||||
Context->getNullValue(GEP2->getOperand(1)->getType()))
|
||||
GEP2 = cast<User>(GEP2->getOperand(0));
|
||||
const Value *BasePtr2 = GEP2->getOperand(0);
|
||||
|
||||
@ -480,7 +481,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
|
||||
for (unsigned i = 0; i != GEPOperands.size(); ++i)
|
||||
if (!isa<ConstantInt>(GEPOperands[i]))
|
||||
GEPOperands[i] =
|
||||
Constant::getNullValue(GEPOperands[i]->getType());
|
||||
Context->getNullValue(GEPOperands[i]->getType());
|
||||
int64_t Offset =
|
||||
getTargetData().getIndexedOffset(BasePtr->getType(),
|
||||
&GEPOperands[0],
|
||||
@ -498,16 +499,16 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
|
||||
|
||||
// This function is used to determine if the indices of two GEP instructions are
|
||||
// equal. V1 and V2 are the indices.
|
||||
static bool IndexOperandsEqual(Value *V1, Value *V2) {
|
||||
static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext* Context) {
|
||||
if (V1->getType() == V2->getType())
|
||||
return V1 == V2;
|
||||
if (Constant *C1 = dyn_cast<Constant>(V1))
|
||||
if (Constant *C2 = dyn_cast<Constant>(V2)) {
|
||||
// Sign extend the constants to long types, if necessary
|
||||
if (C1->getType() != Type::Int64Ty)
|
||||
C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
|
||||
C1 = Context->getConstantExprSExt(C1, Type::Int64Ty);
|
||||
if (C2->getType() != Type::Int64Ty)
|
||||
C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
|
||||
C2 = Context->getConstantExprSExt(C2, Type::Int64Ty);
|
||||
return C1 == C2;
|
||||
}
|
||||
return false;
|
||||
@ -535,7 +536,8 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
|
||||
unsigned UnequalOper = 0;
|
||||
while (UnequalOper != MinOperands &&
|
||||
IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
|
||||
IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
|
||||
Context)) {
|
||||
// Advance through the type as we go...
|
||||
++UnequalOper;
|
||||
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
|
||||
@ -600,9 +602,9 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
if (G1OC->getType() != G2OC->getType()) {
|
||||
// Sign extend both operands to long.
|
||||
if (G1OC->getType() != Type::Int64Ty)
|
||||
G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
|
||||
G1OC = Context->getConstantExprSExt(G1OC, Type::Int64Ty);
|
||||
if (G2OC->getType() != Type::Int64Ty)
|
||||
G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
|
||||
G2OC = Context->getConstantExprSExt(G2OC, Type::Int64Ty);
|
||||
GEP1Ops[FirstConstantOper] = G1OC;
|
||||
GEP2Ops[FirstConstantOper] = G2OC;
|
||||
}
|
||||
@ -689,7 +691,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
// TargetData::getIndexedOffset.
|
||||
for (i = 0; i != MaxOperands; ++i)
|
||||
if (!isa<ConstantInt>(GEP1Ops[i]))
|
||||
GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
|
||||
GEP1Ops[i] = Context->getNullValue(GEP1Ops[i]->getType());
|
||||
// Okay, now get the offset. This is the relative offset for the full
|
||||
// instruction.
|
||||
const TargetData &TD = getTargetData();
|
||||
@ -734,7 +736,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
const Type *ZeroIdxTy = GEPPointerTy;
|
||||
for (unsigned i = 0; i != FirstConstantOper; ++i) {
|
||||
if (!isa<StructType>(ZeroIdxTy))
|
||||
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
|
||||
GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Type::Int32Ty);
|
||||
|
||||
if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
|
||||
ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
|
||||
@ -749,7 +751,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
// If they are equal, use a zero index...
|
||||
if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
|
||||
if (!isa<ConstantInt>(Op1))
|
||||
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
|
||||
GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Op1->getType());
|
||||
// Otherwise, just keep the constants we have.
|
||||
} else {
|
||||
if (Op1) {
|
||||
@ -775,9 +777,11 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
// value possible.
|
||||
//
|
||||
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
|
||||
GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
|
||||
GEP1Ops[i] =
|
||||
Context->getConstantInt(Type::Int64Ty,AT->getNumElements()-1);
|
||||
else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
|
||||
GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
|
||||
GEP1Ops[i] =
|
||||
Context->getConstantInt(Type::Int64Ty,VT->getNumElements()-1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -792,7 +796,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
|
||||
return MayAlias; // Be conservative with out-of-range accesses
|
||||
}
|
||||
} else { // Conservatively assume the minimum value for this index
|
||||
GEP2Ops[i] = Constant::getNullValue(Op2->getType());
|
||||
GEP2Ops[i] = Context->getNullValue(Op2->getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -19,6 +19,7 @@
|
||||
#include "llvm/GlobalVariable.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Intrinsics.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/StringMap.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
@ -92,7 +93,8 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
|
||||
/// these together. If target data info is available, it is provided as TD,
|
||||
/// otherwise TD is null.
|
||||
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
|
||||
Constant *Op1, const TargetData *TD){
|
||||
Constant *Op1, const TargetData *TD,
|
||||
LLVMContext* Context){
|
||||
// SROA
|
||||
|
||||
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
|
||||
@ -110,7 +112,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
|
||||
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
|
||||
GV1 == GV2) {
|
||||
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
|
||||
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
|
||||
return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
|
||||
}
|
||||
}
|
||||
|
||||
@ -121,6 +123,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
|
||||
/// constant expression, do so.
|
||||
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
|
||||
const Type *ResultTy,
|
||||
LLVMContext* Context,
|
||||
const TargetData *TD) {
|
||||
Constant *Ptr = Ops[0];
|
||||
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
|
||||
@ -147,14 +150,14 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
|
||||
|
||||
uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
|
||||
(Value**)Ops+1, NumOps-1);
|
||||
Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset+BasePtr);
|
||||
return ConstantExpr::getIntToPtr(C, ResultTy);
|
||||
Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
|
||||
return Context->getConstantExprIntToPtr(C, ResultTy);
|
||||
}
|
||||
|
||||
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
|
||||
/// targetdata. Return 0 if unfoldable.
|
||||
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
||||
const TargetData &TD) {
|
||||
const TargetData &TD, LLVMContext* Context) {
|
||||
// If this is a bitcast from constant vector -> vector, fold it.
|
||||
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
|
||||
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
|
||||
@ -180,24 +183,24 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
||||
if (DstEltTy->isFloatingPoint()) {
|
||||
// Fold to an vector of integers with same size as our FP type.
|
||||
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
|
||||
const Type *DestIVTy = VectorType::get(IntegerType::get(FPWidth),
|
||||
NumDstElt);
|
||||
const Type *DestIVTy = Context->getVectorType(
|
||||
Context->getIntegerType(FPWidth), NumDstElt);
|
||||
// Recursively handle this integer conversion, if possible.
|
||||
C = FoldBitCast(C, DestIVTy, TD);
|
||||
C = FoldBitCast(C, DestIVTy, TD, Context);
|
||||
if (!C) return 0;
|
||||
|
||||
// Finally, VMCore can handle this now that #elts line up.
|
||||
return ConstantExpr::getBitCast(C, DestTy);
|
||||
return Context->getConstantExprBitCast(C, DestTy);
|
||||
}
|
||||
|
||||
// Okay, we know the destination is integer, if the input is FP, convert
|
||||
// it to integer first.
|
||||
if (SrcEltTy->isFloatingPoint()) {
|
||||
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
|
||||
const Type *SrcIVTy = VectorType::get(IntegerType::get(FPWidth),
|
||||
NumSrcElt);
|
||||
const Type *SrcIVTy = Context->getVectorType(
|
||||
Context->getIntegerType(FPWidth), NumSrcElt);
|
||||
// Ask VMCore to do the conversion now that #elts line up.
|
||||
C = ConstantExpr::getBitCast(C, SrcIVTy);
|
||||
C = Context->getConstantExprBitCast(C, SrcIVTy);
|
||||
CV = dyn_cast<ConstantVector>(C);
|
||||
if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
|
||||
}
|
||||
@ -211,7 +214,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
||||
SmallVector<Constant*, 32> Result;
|
||||
if (NumDstElt < NumSrcElt) {
|
||||
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
|
||||
Constant *Zero = Constant::getNullValue(DstEltTy);
|
||||
Constant *Zero = Context->getNullValue(DstEltTy);
|
||||
unsigned Ratio = NumSrcElt/NumDstElt;
|
||||
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
|
||||
unsigned SrcElt = 0;
|
||||
@ -224,15 +227,15 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
||||
if (!Src) return 0; // Reject constantexpr elements.
|
||||
|
||||
// Zero extend the element to the right size.
|
||||
Src = ConstantExpr::getZExt(Src, Elt->getType());
|
||||
Src = Context->getConstantExprZExt(Src, Elt->getType());
|
||||
|
||||
// Shift it to the right place, depending on endianness.
|
||||
Src = ConstantExpr::getShl(Src,
|
||||
ConstantInt::get(Src->getType(), ShiftAmt));
|
||||
Src = Context->getConstantExprShl(Src,
|
||||
Context->getConstantInt(Src->getType(), ShiftAmt));
|
||||
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
|
||||
|
||||
// Mix it in.
|
||||
Elt = ConstantExpr::getOr(Elt, Src);
|
||||
Elt = Context->getConstantExprOr(Elt, Src);
|
||||
}
|
||||
Result.push_back(Elt);
|
||||
}
|
||||
@ -250,17 +253,17 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
||||
for (unsigned j = 0; j != Ratio; ++j) {
|
||||
// Shift the piece of the value into the right place, depending on
|
||||
// endianness.
|
||||
Constant *Elt = ConstantExpr::getLShr(Src,
|
||||
ConstantInt::get(Src->getType(), ShiftAmt));
|
||||
Constant *Elt = Context->getConstantExprLShr(Src,
|
||||
Context->getConstantInt(Src->getType(), ShiftAmt));
|
||||
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
|
||||
|
||||
// Truncate and remember this piece.
|
||||
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
|
||||
Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ConstantVector::get(Result.data(), Result.size());
|
||||
return Context->getConstantVector(Result.data(), Result.size());
|
||||
}
|
||||
}
|
||||
|
||||
@ -278,10 +281,11 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
||||
/// is returned. Note that this function can only fail when attempting to fold
|
||||
/// instructions like loads and stores, which have no constant expression form.
|
||||
///
|
||||
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
|
||||
Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext* Context,
|
||||
const TargetData *TD) {
|
||||
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
||||
if (PN->getNumIncomingValues() == 0)
|
||||
return UndefValue::get(PN->getType());
|
||||
return Context->getUndef(PN->getType());
|
||||
|
||||
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
|
||||
if (Result == 0) return 0;
|
||||
@ -306,16 +310,18 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
|
||||
|
||||
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
|
||||
return ConstantFoldCompareInstOperands(CI->getPredicate(),
|
||||
Ops.data(), Ops.size(), TD);
|
||||
Ops.data(), Ops.size(),
|
||||
Context, TD);
|
||||
else
|
||||
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
|
||||
Ops.data(), Ops.size(), TD);
|
||||
Ops.data(), Ops.size(), Context, TD);
|
||||
}
|
||||
|
||||
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
|
||||
/// using the specified TargetData. If successful, the constant result is
|
||||
/// result is returned, if not, null is returned.
|
||||
Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
|
||||
LLVMContext* Context,
|
||||
const TargetData *TD) {
|
||||
SmallVector<Constant*, 8> Ops;
|
||||
for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
|
||||
@ -323,10 +329,11 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
|
||||
|
||||
if (CE->isCompare())
|
||||
return ConstantFoldCompareInstOperands(CE->getPredicate(),
|
||||
Ops.data(), Ops.size(), TD);
|
||||
Ops.data(), Ops.size(),
|
||||
Context, TD);
|
||||
else
|
||||
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
|
||||
Ops.data(), Ops.size(), TD);
|
||||
Ops.data(), Ops.size(), Context, TD);
|
||||
}
|
||||
|
||||
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
|
||||
@ -337,14 +344,16 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
|
||||
///
|
||||
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
Constant* const* Ops, unsigned NumOps,
|
||||
LLVMContext* Context,
|
||||
const TargetData *TD) {
|
||||
// Handle easy binops first.
|
||||
if (Instruction::isBinaryOp(Opcode)) {
|
||||
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
|
||||
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
|
||||
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
|
||||
Context))
|
||||
return C;
|
||||
|
||||
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
|
||||
return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
|
||||
}
|
||||
|
||||
switch (Opcode) {
|
||||
@ -368,15 +377,15 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
unsigned InWidth = Input->getType()->getScalarSizeInBits();
|
||||
if (TD->getPointerSizeInBits() < InWidth) {
|
||||
Constant *Mask =
|
||||
ConstantInt::get(APInt::getLowBitsSet(InWidth,
|
||||
Context->getConstantInt(APInt::getLowBitsSet(InWidth,
|
||||
TD->getPointerSizeInBits()));
|
||||
Input = ConstantExpr::getAnd(Input, Mask);
|
||||
Input = Context->getConstantExprAnd(Input, Mask);
|
||||
}
|
||||
// Do a zext or trunc to get to the dest size.
|
||||
return ConstantExpr::getIntegerCast(Input, DestTy, false);
|
||||
return Context->getConstantExprIntegerCast(Input, DestTy, false);
|
||||
}
|
||||
}
|
||||
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
|
||||
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
|
||||
case Instruction::IntToPtr:
|
||||
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
|
||||
// the int size is >= the ptr size. This requires knowing the width of a
|
||||
@ -387,8 +396,8 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
CE->getType()->getScalarSizeInBits()) {
|
||||
if (CE->getOpcode() == Instruction::PtrToInt) {
|
||||
Constant *Input = CE->getOperand(0);
|
||||
Constant *C = FoldBitCast(Input, DestTy, *TD);
|
||||
return C ? C : ConstantExpr::getBitCast(Input, DestTy);
|
||||
Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
|
||||
return C ? C : Context->getConstantExprBitCast(Input, DestTy);
|
||||
}
|
||||
// If there's a constant offset added to the integer value before
|
||||
// it is casted back to a pointer, see if the expression can be
|
||||
@ -411,17 +420,18 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
|
||||
AT->getNumElements()))) {
|
||||
Constant *Index[] = {
|
||||
Constant::getNullValue(CE->getType()),
|
||||
ConstantInt::get(ElemIdx)
|
||||
Context->getNullValue(CE->getType()),
|
||||
Context->getConstantInt(ElemIdx)
|
||||
};
|
||||
return ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
|
||||
return
|
||||
Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
|
||||
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
|
||||
case Instruction::Trunc:
|
||||
case Instruction::ZExt:
|
||||
case Instruction::SExt:
|
||||
@ -431,25 +441,25 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
case Instruction::SIToFP:
|
||||
case Instruction::FPToUI:
|
||||
case Instruction::FPToSI:
|
||||
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
|
||||
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
|
||||
case Instruction::BitCast:
|
||||
if (TD)
|
||||
if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD))
|
||||
if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
|
||||
return C;
|
||||
return ConstantExpr::getBitCast(Ops[0], DestTy);
|
||||
return Context->getConstantExprBitCast(Ops[0], DestTy);
|
||||
case Instruction::Select:
|
||||
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
|
||||
return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::ExtractElement:
|
||||
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
|
||||
return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
|
||||
case Instruction::InsertElement:
|
||||
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
|
||||
return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::ShuffleVector:
|
||||
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
|
||||
return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::GetElementPtr:
|
||||
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
|
||||
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
|
||||
return C;
|
||||
|
||||
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
|
||||
return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -460,6 +470,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
||||
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
Constant*const * Ops,
|
||||
unsigned NumOps,
|
||||
LLVMContext* Context,
|
||||
const TargetData *TD) {
|
||||
// fold: icmp (inttoptr x), null -> icmp x, 0
|
||||
// fold: icmp (ptrtoint x), 0 -> icmp x, null
|
||||
@ -474,10 +485,11 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
if (CE0->getOpcode() == Instruction::IntToPtr) {
|
||||
// Convert the integer value to the right size to ensure we get the
|
||||
// proper extension or truncation.
|
||||
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
|
||||
Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
|
||||
IntPtrTy, false);
|
||||
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
|
||||
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
||||
Context, TD);
|
||||
}
|
||||
|
||||
// Only do this transformation if the int is intptrty in size, otherwise
|
||||
@ -485,9 +497,10 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
if (CE0->getOpcode() == Instruction::PtrToInt &&
|
||||
CE0->getType() == IntPtrTy) {
|
||||
Constant *C = CE0->getOperand(0);
|
||||
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
|
||||
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
|
||||
// FIXME!
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
||||
Context, TD);
|
||||
}
|
||||
}
|
||||
|
||||
@ -498,12 +511,13 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
if (CE0->getOpcode() == Instruction::IntToPtr) {
|
||||
// Convert the integer value to the right size to ensure we get the
|
||||
// proper extension or truncation.
|
||||
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
|
||||
Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
|
||||
IntPtrTy, false);
|
||||
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
|
||||
Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
|
||||
IntPtrTy, false);
|
||||
Constant *NewOps[] = { C0, C1 };
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
||||
Context, TD);
|
||||
}
|
||||
|
||||
// Only do this transformation if the int is intptrty in size, otherwise
|
||||
@ -514,12 +528,13 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
Constant *NewOps[] = {
|
||||
CE0->getOperand(0), CE1->getOperand(0)
|
||||
};
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
|
||||
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
||||
Context, TD);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
|
||||
return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
|
||||
}
|
||||
|
||||
|
||||
@ -527,8 +542,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
||||
/// getelementptr constantexpr, return the constant value being addressed by the
|
||||
/// constant expression, or null if something is funny and we can't decide.
|
||||
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
|
||||
ConstantExpr *CE) {
|
||||
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
|
||||
ConstantExpr *CE,
|
||||
LLVMContext* Context) {
|
||||
if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
|
||||
return 0; // Do not allow stepping over the value!
|
||||
|
||||
// Loop over all of the operands, tracking down which value we are
|
||||
@ -543,9 +559,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
|
||||
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
|
||||
C = CS->getOperand(El);
|
||||
} else if (isa<ConstantAggregateZero>(C)) {
|
||||
C = Constant::getNullValue(STy->getElementType(El));
|
||||
C = Context->getNullValue(STy->getElementType(El));
|
||||
} else if (isa<UndefValue>(C)) {
|
||||
C = UndefValue::get(STy->getElementType(El));
|
||||
C = Context->getUndef(STy->getElementType(El));
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
@ -556,9 +572,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
|
||||
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
|
||||
C = CA->getOperand(CI->getZExtValue());
|
||||
else if (isa<ConstantAggregateZero>(C))
|
||||
C = Constant::getNullValue(ATy->getElementType());
|
||||
C = Context->getNullValue(ATy->getElementType());
|
||||
else if (isa<UndefValue>(C))
|
||||
C = UndefValue::get(ATy->getElementType());
|
||||
C = Context->getUndef(ATy->getElementType());
|
||||
else
|
||||
return 0;
|
||||
} else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
|
||||
@ -567,9 +583,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
|
||||
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
|
||||
C = CP->getOperand(CI->getZExtValue());
|
||||
else if (isa<ConstantAggregateZero>(C))
|
||||
C = Constant::getNullValue(PTy->getElementType());
|
||||
C = Context->getNullValue(PTy->getElementType());
|
||||
else if (isa<UndefValue>(C))
|
||||
C = UndefValue::get(PTy->getElementType());
|
||||
C = Context->getUndef(PTy->getElementType());
|
||||
else
|
||||
return 0;
|
||||
} else {
|
||||
@ -664,7 +680,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
|
||||
}
|
||||
|
||||
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
|
||||
const Type *Ty) {
|
||||
const Type *Ty, LLVMContext* Context) {
|
||||
errno = 0;
|
||||
V = NativeFP(V);
|
||||
if (errno != 0) {
|
||||
@ -673,16 +689,17 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
|
||||
}
|
||||
|
||||
if (Ty == Type::FloatTy)
|
||||
return ConstantFP::get(APFloat((float)V));
|
||||
return Context->getConstantFP(APFloat((float)V));
|
||||
if (Ty == Type::DoubleTy)
|
||||
return ConstantFP::get(APFloat(V));
|
||||
return Context->getConstantFP(APFloat(V));
|
||||
assert(0 && "Can only constant fold float/double");
|
||||
return 0; // dummy return to suppress warning
|
||||
}
|
||||
|
||||
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
|
||||
double V, double W,
|
||||
const Type *Ty) {
|
||||
const Type *Ty,
|
||||
LLVMContext* Context) {
|
||||
errno = 0;
|
||||
V = NativeFP(V, W);
|
||||
if (errno != 0) {
|
||||
@ -691,9 +708,9 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
|
||||
}
|
||||
|
||||
if (Ty == Type::FloatTy)
|
||||
return ConstantFP::get(APFloat((float)V));
|
||||
return Context->getConstantFP(APFloat((float)V));
|
||||
if (Ty == Type::DoubleTy)
|
||||
return ConstantFP::get(APFloat(V));
|
||||
return Context->getConstantFP(APFloat(V));
|
||||
assert(0 && "Can only constant fold float/double");
|
||||
return 0; // dummy return to suppress warning
|
||||
}
|
||||
@ -705,6 +722,7 @@ Constant *
|
||||
llvm::ConstantFoldCall(Function *F,
|
||||
Constant* const* Operands, unsigned NumOperands) {
|
||||
if (!F->hasName()) return 0;
|
||||
LLVMContext* Context = F->getContext();
|
||||
const char *Str = F->getNameStart();
|
||||
unsigned Len = F->getNameLen();
|
||||
|
||||
@ -722,75 +740,75 @@ llvm::ConstantFoldCall(Function *F,
|
||||
switch (Str[0]) {
|
||||
case 'a':
|
||||
if (Len == 4 && !strcmp(Str, "acos"))
|
||||
return ConstantFoldFP(acos, V, Ty);
|
||||
return ConstantFoldFP(acos, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "asin"))
|
||||
return ConstantFoldFP(asin, V, Ty);
|
||||
return ConstantFoldFP(asin, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "atan"))
|
||||
return ConstantFoldFP(atan, V, Ty);
|
||||
return ConstantFoldFP(atan, V, Ty, Context);
|
||||
break;
|
||||
case 'c':
|
||||
if (Len == 4 && !strcmp(Str, "ceil"))
|
||||
return ConstantFoldFP(ceil, V, Ty);
|
||||
return ConstantFoldFP(ceil, V, Ty, Context);
|
||||
else if (Len == 3 && !strcmp(Str, "cos"))
|
||||
return ConstantFoldFP(cos, V, Ty);
|
||||
return ConstantFoldFP(cos, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "cosh"))
|
||||
return ConstantFoldFP(cosh, V, Ty);
|
||||
return ConstantFoldFP(cosh, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "cosf"))
|
||||
return ConstantFoldFP(cos, V, Ty);
|
||||
return ConstantFoldFP(cos, V, Ty, Context);
|
||||
break;
|
||||
case 'e':
|
||||
if (Len == 3 && !strcmp(Str, "exp"))
|
||||
return ConstantFoldFP(exp, V, Ty);
|
||||
return ConstantFoldFP(exp, V, Ty, Context);
|
||||
break;
|
||||
case 'f':
|
||||
if (Len == 4 && !strcmp(Str, "fabs"))
|
||||
return ConstantFoldFP(fabs, V, Ty);
|
||||
return ConstantFoldFP(fabs, V, Ty, Context);
|
||||
else if (Len == 5 && !strcmp(Str, "floor"))
|
||||
return ConstantFoldFP(floor, V, Ty);
|
||||
return ConstantFoldFP(floor, V, Ty, Context);
|
||||
break;
|
||||
case 'l':
|
||||
if (Len == 3 && !strcmp(Str, "log") && V > 0)
|
||||
return ConstantFoldFP(log, V, Ty);
|
||||
return ConstantFoldFP(log, V, Ty, Context);
|
||||
else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
|
||||
return ConstantFoldFP(log10, V, Ty);
|
||||
return ConstantFoldFP(log10, V, Ty, Context);
|
||||
else if (!strcmp(Str, "llvm.sqrt.f32") ||
|
||||
!strcmp(Str, "llvm.sqrt.f64")) {
|
||||
if (V >= -0.0)
|
||||
return ConstantFoldFP(sqrt, V, Ty);
|
||||
return ConstantFoldFP(sqrt, V, Ty, Context);
|
||||
else // Undefined
|
||||
return Constant::getNullValue(Ty);
|
||||
return Context->getNullValue(Ty);
|
||||
}
|
||||
break;
|
||||
case 's':
|
||||
if (Len == 3 && !strcmp(Str, "sin"))
|
||||
return ConstantFoldFP(sin, V, Ty);
|
||||
return ConstantFoldFP(sin, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "sinh"))
|
||||
return ConstantFoldFP(sinh, V, Ty);
|
||||
return ConstantFoldFP(sinh, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
|
||||
return ConstantFoldFP(sqrt, V, Ty);
|
||||
return ConstantFoldFP(sqrt, V, Ty, Context);
|
||||
else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
|
||||
return ConstantFoldFP(sqrt, V, Ty);
|
||||
return ConstantFoldFP(sqrt, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "sinf"))
|
||||
return ConstantFoldFP(sin, V, Ty);
|
||||
return ConstantFoldFP(sin, V, Ty, Context);
|
||||
break;
|
||||
case 't':
|
||||
if (Len == 3 && !strcmp(Str, "tan"))
|
||||
return ConstantFoldFP(tan, V, Ty);
|
||||
return ConstantFoldFP(tan, V, Ty, Context);
|
||||
else if (Len == 4 && !strcmp(Str, "tanh"))
|
||||
return ConstantFoldFP(tanh, V, Ty);
|
||||
return ConstantFoldFP(tanh, V, Ty, Context);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
|
||||
if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
|
||||
return ConstantInt::get(Op->getValue().byteSwap());
|
||||
return Context->getConstantInt(Op->getValue().byteSwap());
|
||||
else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
|
||||
return ConstantInt::get(Ty, Op->getValue().countPopulation());
|
||||
return Context->getConstantInt(Ty, Op->getValue().countPopulation());
|
||||
else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
|
||||
return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
|
||||
return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
|
||||
else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
|
||||
return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
|
||||
return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
|
||||
}
|
||||
} else if (NumOperands == 2) {
|
||||
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
|
||||
@ -805,18 +823,18 @@ llvm::ConstantFoldCall(Function *F,
|
||||
Op2->getValueAPF().convertToDouble();
|
||||
|
||||
if (Len == 3 && !strcmp(Str, "pow")) {
|
||||
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
|
||||
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
|
||||
} else if (Len == 4 && !strcmp(Str, "fmod")) {
|
||||
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
|
||||
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
|
||||
} else if (Len == 5 && !strcmp(Str, "atan2")) {
|
||||
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
|
||||
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
|
||||
}
|
||||
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
|
||||
if (!strcmp(Str, "llvm.powi.f32")) {
|
||||
return ConstantFP::get(APFloat((float)std::pow((float)Op1V,
|
||||
return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
|
||||
(int)Op2C->getZExtValue())));
|
||||
} else if (!strcmp(Str, "llvm.powi.f64")) {
|
||||
return ConstantFP::get(APFloat((double)std::pow((double)Op1V,
|
||||
return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
|
||||
(int)Op2C->getZExtValue())));
|
||||
}
|
||||
}
|
||||
|
@ -3420,6 +3420,7 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
|
||||
if (Constant *C = dyn_cast<Constant>(V)) return C;
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
|
||||
Instruction *I = cast<Instruction>(V);
|
||||
LLVMContext* Context = I->getParent()->getContext();
|
||||
|
||||
std::vector<Constant*> Operands;
|
||||
Operands.resize(I->getNumOperands());
|
||||
@ -3431,10 +3432,12 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
|
||||
|
||||
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
|
||||
return ConstantFoldCompareInstOperands(CI->getPredicate(),
|
||||
&Operands[0], Operands.size());
|
||||
&Operands[0], Operands.size(),
|
||||
Context);
|
||||
else
|
||||
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
|
||||
&Operands[0], Operands.size());
|
||||
&Operands[0], Operands.size(),
|
||||
Context);
|
||||
}
|
||||
|
||||
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
|
||||
@ -3636,10 +3639,11 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
Constant *C;
|
||||
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
|
||||
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
|
||||
&Operands[0], Operands.size());
|
||||
&Operands[0], Operands.size(),
|
||||
Context);
|
||||
else
|
||||
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
|
||||
&Operands[0], Operands.size());
|
||||
&Operands[0], Operands.size(), Context);
|
||||
Pair.first->second = C;
|
||||
return getSCEV(C);
|
||||
}
|
||||
|
@ -282,7 +282,8 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
|
||||
/// users of the global, cleaning up the obvious ones. This is largely just a
|
||||
/// quick scan over the use list to clean up the easy and obvious cruft. This
|
||||
/// returns true if it made a change.
|
||||
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
|
||||
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
|
||||
LLVMContext* Context) {
|
||||
bool Changed = false;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
|
||||
User *U = *UI++;
|
||||
@ -302,12 +303,12 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
||||
Constant *SubInit = 0;
|
||||
if (Init)
|
||||
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
|
||||
Changed |= CleanupConstantGlobalUsers(CE, SubInit);
|
||||
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
|
||||
Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
|
||||
} else if (CE->getOpcode() == Instruction::BitCast &&
|
||||
isa<PointerType>(CE->getType())) {
|
||||
// Pointer cast, delete any stores and memsets to the global.
|
||||
Changed |= CleanupConstantGlobalUsers(CE, 0);
|
||||
Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
|
||||
}
|
||||
|
||||
if (CE->use_empty()) {
|
||||
@ -321,11 +322,11 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
|
||||
Constant *SubInit = 0;
|
||||
if (!isa<ConstantExpr>(GEP->getOperand(0))) {
|
||||
ConstantExpr *CE =
|
||||
dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
|
||||
dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
|
||||
if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
|
||||
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
|
||||
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
|
||||
}
|
||||
Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
|
||||
Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
|
||||
|
||||
if (GEP->use_empty()) {
|
||||
GEP->eraseFromParent();
|
||||
@ -343,7 +344,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
|
||||
if (SafeToDestroyConstant(C)) {
|
||||
C->destroyConstant();
|
||||
// This could have invalidated UI, start over from scratch.
|
||||
CleanupConstantGlobalUsers(V, Init);
|
||||
CleanupConstantGlobalUsers(V, Init, Context);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -783,7 +784,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
|
||||
// nor is the global.
|
||||
if (AllNonStoreUsesGone) {
|
||||
DOUT << " *** GLOBAL NOW DEAD!\n";
|
||||
CleanupConstantGlobalUsers(GV, 0);
|
||||
CleanupConstantGlobalUsers(GV, 0, Context);
|
||||
if (GV->use_empty()) {
|
||||
GV->eraseFromParent();
|
||||
++NumDeleted;
|
||||
@ -795,10 +796,10 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
|
||||
|
||||
/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
|
||||
/// instructions that are foldable.
|
||||
static void ConstantPropUsersOf(Value *V) {
|
||||
static void ConstantPropUsersOf(Value *V, LLVMContext* Context) {
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
|
||||
if (Instruction *I = dyn_cast<Instruction>(*UI++))
|
||||
if (Constant *NewC = ConstantFoldInstruction(I)) {
|
||||
if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
|
||||
I->replaceAllUsesWith(NewC);
|
||||
|
||||
// Advance UI to the next non-I use to avoid invalidating it!
|
||||
@ -925,9 +926,9 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
|
||||
// To further other optimizations, loop over all users of NewGV and try to
|
||||
// constant prop them. This will promote GEP instructions with constant
|
||||
// indices into GEP constant-exprs, which will allow global-opt to hack on it.
|
||||
ConstantPropUsersOf(NewGV);
|
||||
ConstantPropUsersOf(NewGV, Context);
|
||||
if (RepValue != NewGV)
|
||||
ConstantPropUsersOf(RepValue);
|
||||
ConstantPropUsersOf(RepValue, Context);
|
||||
|
||||
return NewGV;
|
||||
}
|
||||
@ -1717,7 +1718,8 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
|
||||
|
||||
// Delete any stores we can find to the global. We may not be able to
|
||||
// make it completely dead though.
|
||||
bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
|
||||
bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
|
||||
Context);
|
||||
|
||||
// If the global is dead now, delete it.
|
||||
if (GV->use_empty()) {
|
||||
@ -1732,7 +1734,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
|
||||
GV->setConstant(true);
|
||||
|
||||
// Clean up any obviously simplifiable users now.
|
||||
CleanupConstantGlobalUsers(GV, GV->getInitializer());
|
||||
CleanupConstantGlobalUsers(GV, GV->getInitializer(), Context);
|
||||
|
||||
// If the global is dead now, just nuke it.
|
||||
if (GV->use_empty()) {
|
||||
@ -1762,7 +1764,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
|
||||
GV->setInitializer(SOVConstant);
|
||||
|
||||
// Clean up any obviously simplifiable users now.
|
||||
CleanupConstantGlobalUsers(GV, GV->getInitializer());
|
||||
CleanupConstantGlobalUsers(GV, GV->getInitializer(), Context);
|
||||
|
||||
if (GV->use_empty()) {
|
||||
DOUT << " *** Substituting initializer allowed us to "
|
||||
@ -2007,7 +2009,7 @@ static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
|
||||
/// enough for us to understand. In particular, if it is a cast of something,
|
||||
/// we punt. We basically just support direct accesses to globals and GEP's of
|
||||
/// globals. This should be kept up to date with CommitValueTo.
|
||||
static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
||||
static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext* Context) {
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
|
||||
if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
|
||||
return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
|
||||
@ -2021,7 +2023,8 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
||||
if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
|
||||
return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
|
||||
return GV->hasInitializer() &&
|
||||
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
|
||||
Context);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@ -2113,7 +2116,8 @@ static void CommitValueTo(Constant *Val, Constant *Addr,
|
||||
/// P after the stores reflected by 'memory' have been performed. If we can't
|
||||
/// decide, return null.
|
||||
static Constant *ComputeLoadResult(Constant *P,
|
||||
const DenseMap<Constant*, Constant*> &Memory) {
|
||||
const DenseMap<Constant*, Constant*> &Memory,
|
||||
LLVMContext* Context) {
|
||||
// If this memory location has been recently stored, use the stored value: it
|
||||
// is the most up-to-date.
|
||||
DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
|
||||
@ -2132,7 +2136,8 @@ static Constant *ComputeLoadResult(Constant *P,
|
||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||
if (GV->hasInitializer())
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
|
||||
Context);
|
||||
}
|
||||
|
||||
return 0; // don't know how to evaluate.
|
||||
@ -2179,7 +2184,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
|
||||
if (SI->isVolatile()) return false; // no volatile accesses.
|
||||
Constant *Ptr = getVal(Values, SI->getOperand(1));
|
||||
if (!isSimpleEnoughPointerToCommit(Ptr))
|
||||
if (!isSimpleEnoughPointerToCommit(Ptr, Context))
|
||||
// If this is too complex for us to commit, reject it.
|
||||
return false;
|
||||
Constant *Val = getVal(Values, SI->getOperand(0));
|
||||
@ -2212,7 +2217,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
|
||||
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
|
||||
if (LI->isVolatile()) return false; // no volatile accesses.
|
||||
InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
|
||||
MutatedMemory);
|
||||
MutatedMemory, Context);
|
||||
if (InstResult == 0) return false; // Could not evaluate load.
|
||||
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
|
||||
if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
|
||||
|
@ -21,6 +21,7 @@
|
||||
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
@ -62,10 +63,10 @@ bool FunctionProfiler::runOnModule(Module &M) {
|
||||
if (!I->isDeclaration())
|
||||
++NumFunctions;
|
||||
|
||||
const Type *ATy = ArrayType::get(Type::Int32Ty, NumFunctions);
|
||||
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumFunctions);
|
||||
GlobalVariable *Counters =
|
||||
new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
|
||||
Constant::getNullValue(ATy), "FuncProfCounters", &M);
|
||||
Context->getNullValue(ATy), "FuncProfCounters", &M);
|
||||
|
||||
// Instrument all of the functions...
|
||||
unsigned i = 0;
|
||||
@ -107,10 +108,10 @@ bool BlockProfiler::runOnModule(Module &M) {
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
NumBlocks += I->size();
|
||||
|
||||
const Type *ATy = ArrayType::get(Type::Int32Ty, NumBlocks);
|
||||
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumBlocks);
|
||||
GlobalVariable *Counters =
|
||||
new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
|
||||
Constant::getNullValue(ATy), "BlockProfCounters", &M);
|
||||
Context->getNullValue(ATy), "BlockProfCounters", &M);
|
||||
|
||||
// Instrument all of the blocks...
|
||||
unsigned i = 0;
|
||||
|
@ -20,6 +20,7 @@
|
||||
#include "ProfilingUtils.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
@ -63,10 +64,10 @@ bool EdgeProfiler::runOnModule(Module &M) {
|
||||
NumEdges += BB->getTerminator()->getNumSuccessors();
|
||||
}
|
||||
|
||||
const Type *ATy = ArrayType::get(Type::Int32Ty, NumEdges);
|
||||
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumEdges);
|
||||
GlobalVariable *Counters =
|
||||
new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
|
||||
Constant::getNullValue(ATy), "EdgeProfCounters", &M);
|
||||
Context->getNullValue(ATy), "EdgeProfCounters", &M);
|
||||
|
||||
// Instrument all of the edges...
|
||||
unsigned i = 0;
|
||||
|
@ -18,13 +18,15 @@
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Module.h"
|
||||
|
||||
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
|
||||
GlobalValue *Array) {
|
||||
LLVMContext* Context = MainFn->getContext();
|
||||
const Type *ArgVTy =
|
||||
PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
|
||||
const PointerType *UIntPtr = PointerType::getUnqual(Type::Int32Ty);
|
||||
Context->getPointerTypeUnqual(Context->getPointerTypeUnqual(Type::Int8Ty));
|
||||
const PointerType *UIntPtr = Context->getPointerTypeUnqual(Type::Int32Ty);
|
||||
Module &M = *MainFn->getParent();
|
||||
Constant *InitFn = M.getOrInsertFunction(FnName, Type::Int32Ty, Type::Int32Ty,
|
||||
ArgVTy, UIntPtr, Type::Int32Ty,
|
||||
@ -33,27 +35,27 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
|
||||
// This could force argc and argv into programs that wouldn't otherwise have
|
||||
// them, but instead we just pass null values in.
|
||||
std::vector<Value*> Args(4);
|
||||
Args[0] = Constant::getNullValue(Type::Int32Ty);
|
||||
Args[1] = Constant::getNullValue(ArgVTy);
|
||||
Args[0] = Context->getNullValue(Type::Int32Ty);
|
||||
Args[1] = Context->getNullValue(ArgVTy);
|
||||
|
||||
// Skip over any allocas in the entry block.
|
||||
BasicBlock *Entry = MainFn->begin();
|
||||
BasicBlock::iterator InsertPos = Entry->begin();
|
||||
while (isa<AllocaInst>(InsertPos)) ++InsertPos;
|
||||
|
||||
std::vector<Constant*> GEPIndices(2, Constant::getNullValue(Type::Int32Ty));
|
||||
std::vector<Constant*> GEPIndices(2, Context->getNullValue(Type::Int32Ty));
|
||||
unsigned NumElements = 0;
|
||||
if (Array) {
|
||||
Args[2] = ConstantExpr::getGetElementPtr(Array, &GEPIndices[0],
|
||||
Args[2] = Context->getConstantExprGetElementPtr(Array, &GEPIndices[0],
|
||||
GEPIndices.size());
|
||||
NumElements =
|
||||
cast<ArrayType>(Array->getType()->getElementType())->getNumElements();
|
||||
} else {
|
||||
// If this profiling instrumentation doesn't have a constant array, just
|
||||
// pass null.
|
||||
Args[2] = ConstantPointerNull::get(UIntPtr);
|
||||
Args[2] = Context->getConstantPointerNull(UIntPtr);
|
||||
}
|
||||
Args[3] = ConstantInt::get(Type::Int32Ty, NumElements);
|
||||
Args[3] = Context->getConstantInt(Type::Int32Ty, NumElements);
|
||||
|
||||
Instruction *InitCall = CallInst::Create(InitFn, Args.begin(), Args.end(),
|
||||
"newargc", InsertPos);
|
||||
@ -99,6 +101,8 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
|
||||
|
||||
void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
|
||||
GlobalValue *CounterArray) {
|
||||
LLVMContext* Context = BB->getContext();
|
||||
|
||||
// Insert the increment after any alloca or PHI instructions...
|
||||
BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
|
||||
while (isa<AllocaInst>(InsertPos))
|
||||
@ -106,15 +110,16 @@ void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
|
||||
|
||||
// Create the getelementptr constant expression
|
||||
std::vector<Constant*> Indices(2);
|
||||
Indices[0] = Constant::getNullValue(Type::Int32Ty);
|
||||
Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
|
||||
Indices[0] = Context->getNullValue(Type::Int32Ty);
|
||||
Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
|
||||
Constant *ElementPtr =
|
||||
ConstantExpr::getGetElementPtr(CounterArray, &Indices[0], Indices.size());
|
||||
Context->getConstantExprGetElementPtr(CounterArray, &Indices[0],
|
||||
Indices.size());
|
||||
|
||||
// Load, increment and store the value back.
|
||||
Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos);
|
||||
Value *NewVal = BinaryOperator::Create(Instruction::Add, OldVal,
|
||||
ConstantInt::get(Type::Int32Ty, 1),
|
||||
Context->getConstantInt(Type::Int32Ty, 1),
|
||||
"NewFuncCounter", InsertPos);
|
||||
new StoreInst(NewVal, ElementPtr, InsertPos);
|
||||
}
|
||||
|
@ -33,6 +33,7 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Constants.h"
|
||||
@ -195,7 +196,7 @@ static void getBackEdges(Function& F, T& BackEdges);
|
||||
|
||||
GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t,
|
||||
uint64_t resetval) : T(t) {
|
||||
ConstantInt* Init = ConstantInt::get(T, resetval);
|
||||
ConstantInt* Init = M.getContext().getConstantInt(T, resetval);
|
||||
ResetValue = Init;
|
||||
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
|
||||
Init, "RandomSteeringCounter", &M);
|
||||
@ -207,14 +208,16 @@ void GlobalRandomCounter::PrepFunction(Function* F) {}
|
||||
|
||||
void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
|
||||
BranchInst* t = cast<BranchInst>(bb->getTerminator());
|
||||
LLVMContext* Context = bb->getContext();
|
||||
|
||||
//decrement counter
|
||||
LoadInst* l = new LoadInst(Counter, "counter", t);
|
||||
|
||||
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
|
||||
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l,
|
||||
Context->getConstantInt(T, 0),
|
||||
"countercc", t);
|
||||
|
||||
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
|
||||
Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
|
||||
"counternew", t);
|
||||
new StoreInst(nv, Counter, t);
|
||||
t->setCondition(s);
|
||||
@ -232,7 +235,7 @@ void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
|
||||
GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t,
|
||||
uint64_t resetval)
|
||||
: AI(0), T(t) {
|
||||
ConstantInt* Init = ConstantInt::get(T, resetval);
|
||||
ConstantInt* Init = M.getContext().getConstantInt(T, resetval);
|
||||
ResetValue = Init;
|
||||
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
|
||||
Init, "RandomSteeringCounter", &M);
|
||||
@ -279,14 +282,16 @@ void GlobalRandomCounterOpt::PrepFunction(Function* F) {
|
||||
|
||||
void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
|
||||
BranchInst* t = cast<BranchInst>(bb->getTerminator());
|
||||
LLVMContext* Context = bb->getContext();
|
||||
|
||||
//decrement counter
|
||||
LoadInst* l = new LoadInst(AI, "counter", t);
|
||||
|
||||
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
|
||||
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l,
|
||||
Context->getConstantInt(T, 0),
|
||||
"countercc", t);
|
||||
|
||||
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
|
||||
Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
|
||||
"counternew", t);
|
||||
new StoreInst(nv, AI, t);
|
||||
t->setCondition(s);
|
||||
@ -312,14 +317,15 @@ void CycleCounter::PrepFunction(Function* F) {}
|
||||
|
||||
void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
|
||||
BranchInst* t = cast<BranchInst>(bb->getTerminator());
|
||||
LLVMContext* Context = bb->getContext();
|
||||
|
||||
CallInst* c = CallInst::Create(F, "rdcc", t);
|
||||
BinaryOperator* b =
|
||||
BinaryOperator::CreateAnd(c, ConstantInt::get(Type::Int64Ty, rm),
|
||||
BinaryOperator::CreateAnd(c, Context->getConstantInt(Type::Int64Ty, rm),
|
||||
"mrdcc", t);
|
||||
|
||||
ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
|
||||
ConstantInt::get(Type::Int64Ty, 0),
|
||||
Context->getConstantInt(Type::Int64Ty, 0),
|
||||
"mrdccc", t);
|
||||
|
||||
t->setCondition(s);
|
||||
@ -345,16 +351,16 @@ void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNu
|
||||
|
||||
// Create the getelementptr constant expression
|
||||
std::vector<Constant*> Indices(2);
|
||||
Indices[0] = Constant::getNullValue(Type::Int32Ty);
|
||||
Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
|
||||
Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray,
|
||||
Indices[0] = Context->getNullValue(Type::Int32Ty);
|
||||
Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
|
||||
Constant *ElementPtr = Context->getConstantExprGetElementPtr(CounterArray,
|
||||
&Indices[0], 2);
|
||||
|
||||
// Load, increment and store the value back.
|
||||
Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
|
||||
profcode.insert(OldVal);
|
||||
Value *NewVal = BinaryOperator::CreateAdd(OldVal,
|
||||
ConstantInt::get(Type::Int32Ty, 1),
|
||||
Context->getConstantInt(Type::Int32Ty, 1),
|
||||
"NewCounter", InsertPos);
|
||||
profcode.insert(NewVal);
|
||||
profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
|
||||
@ -475,7 +481,7 @@ void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F)
|
||||
//b:
|
||||
BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
|
||||
BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
|
||||
ConstantInt::get(Type::Int1Ty, true), bbCp);
|
||||
Context->getConstantInt(Type::Int1Ty, true), bbCp);
|
||||
//c:
|
||||
{
|
||||
TerminatorInst* iB = src->getTerminator();
|
||||
@ -532,7 +538,7 @@ bool ProfilerRS::runOnFunction(Function& F) {
|
||||
ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
|
||||
cast<BasicBlock>(
|
||||
Translate(T->getSuccessor(0))),
|
||||
ConstantInt::get(Type::Int1Ty,
|
||||
Context->getConstantInt(Type::Int1Ty,
|
||||
true)));
|
||||
|
||||
//do whatever is needed now that the function is duplicated
|
||||
|
@ -67,7 +67,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
|
||||
WorkList.erase(WorkList.begin()); // Get an element from the worklist...
|
||||
|
||||
if (!I->use_empty()) // Don't muck with dead instructions...
|
||||
if (Constant *C = ConstantFoldInstruction(I)) {
|
||||
if (Constant *C = ConstantFoldInstruction(I, Context)) {
|
||||
// Add all of the users of this instruction to the worklist, they might
|
||||
// be constant propagatable now...
|
||||
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
|
||||
|
@ -11598,7 +11598,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
|
||||
if (GV->isConstant() && GV->hasDefinitiveInitializer())
|
||||
if (Constant *V =
|
||||
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
|
||||
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
|
||||
Context))
|
||||
return ReplaceInstUsesWith(LI, V);
|
||||
if (CE->getOperand(0)->isNullValue()) {
|
||||
// Insert a new store to null instruction before the load to indicate
|
||||
@ -12876,7 +12877,7 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
|
||||
}
|
||||
|
||||
// ConstantProp instruction if trivially constant.
|
||||
if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
|
||||
if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
|
||||
DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
|
||||
Inst->replaceAllUsesWith(C);
|
||||
++NumConstProp;
|
||||
@ -12991,7 +12992,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
|
||||
}
|
||||
|
||||
// Instruction isn't dead, see if we can constant propagate it.
|
||||
if (Constant *C = ConstantFoldInstruction(I, TD)) {
|
||||
if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) {
|
||||
DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
|
||||
|
||||
// Add operands to the worklist.
|
||||
@ -13011,7 +13012,8 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
|
||||
// See if we can constant fold its operands.
|
||||
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i))
|
||||
if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
|
||||
if (Constant *NewC = ConstantFoldConstantExpression(CE,
|
||||
F.getContext(), TD))
|
||||
if (NewC != CE) {
|
||||
i->set(NewC);
|
||||
Changed = true;
|
||||
|
@ -982,7 +982,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
|
||||
BI = NewBB->begin();
|
||||
for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
|
||||
Instruction *Inst = BI++;
|
||||
if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
|
||||
if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
|
||||
Inst->replaceAllUsesWith(C);
|
||||
Inst->eraseFromParent();
|
||||
continue;
|
||||
|
@ -986,7 +986,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
|
||||
Worklist.pop_back();
|
||||
|
||||
// Simple constant folding.
|
||||
if (Constant *C = ConstantFoldInstruction(I)) {
|
||||
if (Constant *C = ConstantFoldInstruction(I, Context)) {
|
||||
ReplaceUsesOfWith(I, C, Worklist, L, LPM);
|
||||
continue;
|
||||
}
|
||||
|
@ -1158,7 +1158,8 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
|
||||
if (GV->isConstant() && GV->hasDefinitiveInitializer())
|
||||
if (Constant *V =
|
||||
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
|
||||
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
|
||||
Context)) {
|
||||
markConstant(IV, &I, V);
|
||||
return;
|
||||
}
|
||||
|
@ -358,7 +358,7 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
|
||||
Instruction *Inst = BI++;
|
||||
if (isInstructionTriviallyDead(Inst))
|
||||
Inst->eraseFromParent();
|
||||
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
||||
else if (Constant *C = ConstantFoldInstruction(Inst, Context)) {
|
||||
Inst->replaceAllUsesWith(C);
|
||||
Inst->eraseFromParent();
|
||||
}
|
||||
|
@ -338,7 +338,8 @@ ConstantFoldMappedInstruction(const Instruction *I) {
|
||||
|
||||
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
|
||||
return ConstantFoldCompareInstOperands(CI->getPredicate(),
|
||||
&Ops[0], Ops.size(), TD);
|
||||
&Ops[0], Ops.size(),
|
||||
Context, TD);
|
||||
|
||||
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
|
||||
@ -346,10 +347,10 @@ ConstantFoldMappedInstruction(const Instruction *I) {
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
|
||||
if (GV->isConstant() && GV->hasDefinitiveInitializer())
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
|
||||
CE);
|
||||
CE, Context);
|
||||
|
||||
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
|
||||
Ops.size(), TD);
|
||||
Ops.size(), Context, TD);
|
||||
}
|
||||
|
||||
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
|
||||
|
@ -1178,6 +1178,7 @@ static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
|
||||
/// ultimate destination.
|
||||
static bool FoldCondBranchOnPHI(BranchInst *BI) {
|
||||
BasicBlock *BB = BI->getParent();
|
||||
LLVMContext* Context = BB->getContext();
|
||||
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
|
||||
// NOTE: we currently cannot transform this case if the PHI node is used
|
||||
// outside of the block.
|
||||
@ -1243,7 +1244,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
|
||||
}
|
||||
|
||||
// Check for trivial simplification.
|
||||
if (Constant *C = ConstantFoldInstruction(N)) {
|
||||
if (Constant *C = ConstantFoldInstruction(N, Context)) {
|
||||
TranslateMap[BBI] = C;
|
||||
delete N; // Constant folded away, don't need actual inst
|
||||
} else {
|
||||
|
@ -349,7 +349,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
|
||||
|
||||
if (isInstructionTriviallyDead(Inst))
|
||||
(*BB)->getInstList().erase(Inst);
|
||||
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
||||
else if (Constant *C = ConstantFoldInstruction(Inst,
|
||||
Header->getContext())) {
|
||||
Inst->replaceAllUsesWith(C);
|
||||
(*BB)->getInstList().erase(Inst);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user