mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
Allow AVX vrsqrtps generation.
This is a follow-on to r220570 that allows a 256-bit (v8f32) version of vrsqrtps to be generated. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220579 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
7f6ba1758b
commit
51fa1bcef3
@ -14383,13 +14383,14 @@ SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
|
||||
EVT VT = Op.getValueType();
|
||||
|
||||
// SSE1 has rsqrtss and rsqrtps.
|
||||
// TODO: Add support for AVX (v8f32) and AVX512 (v16f32).
|
||||
// TODO: Add support for AVX512 (v16f32).
|
||||
// It is likely not profitable to do this for f64 because a double-precision
|
||||
// rsqrt estimate with refinement on x86 prior to FMA requires at least 16
|
||||
// instructions: convert to single, rsqrtss, convert back to double, refine
|
||||
// (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
|
||||
// along with FMA, this could be a throughput win.
|
||||
if (Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) {
|
||||
if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
|
||||
(Subtarget->hasAVX() && VT == MVT::v8f32)) {
|
||||
RefinementSteps = 1;
|
||||
UseOneConstNR = false;
|
||||
return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
|
||||
|
@ -55,9 +55,14 @@ entry:
|
||||
|
||||
declare x86_fp80 @__sqrtl_finite(x86_fp80) #1
|
||||
|
||||
declare float @llvm.sqrt.f32(float) #1
|
||||
declare <4 x float> @llvm.sqrt.v4f32(<4 x float>) #1
|
||||
declare <8 x float> @llvm.sqrt.v8f32(<8 x float>) #1
|
||||
|
||||
; If the target's sqrtss and divss instructions are substantially
|
||||
; slower than rsqrtss with a Newton-Raphson refinement, we should
|
||||
; generate the estimate sequence.
|
||||
|
||||
define float @reciprocal_square_root(float %x) #0 {
|
||||
%sqrt = tail call float @llvm.sqrt.f32(float %x)
|
||||
%div = fdiv fast float 1.0, %sqrt
|
||||
@ -78,11 +83,6 @@ define float @reciprocal_square_root(float %x) #0 {
|
||||
; BTVER2-NEXT: retq
|
||||
}
|
||||
|
||||
declare float @llvm.sqrt.f32(float) #1
|
||||
|
||||
; If the target's sqrtps and divps instructions are substantially
|
||||
; slower than rsqrtps with a Newton-Raphson refinement, we should
|
||||
; generate the estimate sequence.
|
||||
define <4 x float> @reciprocal_square_root_v4f32(<4 x float> %x) #0 {
|
||||
%sqrt = tail call <4 x float> @llvm.sqrt.v4f32(<4 x float> %x)
|
||||
%div = fdiv fast <4 x float> <float 1.0, float 1.0, float 1.0, float 1.0>, %sqrt
|
||||
@ -103,7 +103,28 @@ define <4 x float> @reciprocal_square_root_v4f32(<4 x float> %x) #0 {
|
||||
; BTVER2-NEXT: retq
|
||||
}
|
||||
|
||||
declare <4 x float> @llvm.sqrt.v4f32(<4 x float>) #1
|
||||
define <8 x float> @reciprocal_square_root_v8f32(<8 x float> %x) #0 {
|
||||
%sqrt = tail call <8 x float> @llvm.sqrt.v8f32(<8 x float> %x)
|
||||
%div = fdiv fast <8 x float> <float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0>, %sqrt
|
||||
ret <8 x float> %div
|
||||
|
||||
; CHECK-LABEL: reciprocal_square_root_v8f32:
|
||||
; CHECK: sqrtps
|
||||
; CHECK-NEXT: sqrtps
|
||||
; CHECK-NEXT: movaps
|
||||
; CHECK-NEXT: movaps
|
||||
; CHECK-NEXT: divps
|
||||
; CHECK-NEXT: divps
|
||||
; CHECK-NEXT: retq
|
||||
; BTVER2-LABEL: reciprocal_square_root_v8f32:
|
||||
; BTVER2: vrsqrtps
|
||||
; BTVER2-NEXT: vmulps
|
||||
; BTVER2-NEXT: vmulps
|
||||
; BTVER2-NEXT: vmulps
|
||||
; BTVER2-NEXT: vaddps
|
||||
; BTVER2-NEXT: vmulps
|
||||
; BTVER2-NEXT: retq
|
||||
}
|
||||
|
||||
|
||||
attributes #0 = { nounwind readnone uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="true" "no-nans-fp-math"="true" "unsafe-fp-math"="true" "use-soft-float"="false" }
|
||||
|
Loading…
Reference in New Issue
Block a user