This patch addresses PR35: Loop simplify should reconstruct nested loops.

This is fairly straight-forward, but was a real nightmare to get just
perfect.  aarg.  :)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12884 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-04-13 05:05:33 +00:00
parent cce5a349d9
commit 529b28da45

View File

@ -41,6 +41,7 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Support/SetOperations.h"
#include "Support/Statistic.h"
#include "Support/DepthFirstIterator.h"
@ -49,6 +50,8 @@ using namespace llvm;
namespace {
Statistic<>
NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
Statistic<>
NumNested("loopsimplify", "Number of nested loops split out");
struct LoopSimplify : public FunctionPass {
virtual bool runOnFunction(Function &F);
@ -72,6 +75,7 @@ namespace {
const std::vector<BasicBlock*> &Preds);
void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
void InsertPreheaderForLoop(Loop *L);
Loop *SeparateNestedLoop(Loop *L);
void InsertUniqueBackedgeBlock(Loop *L);
void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
@ -159,10 +163,17 @@ bool LoopSimplify::ProcessLoop(Loop *L) {
}
}
// The preheader may have more than two predecessors at this point (from the
// preheader and from the backedges). To simplify the loop more, insert an
// extra back-edge block in the loop so that there is exactly one backedge.
// If the header has more than two predecessors at this point (from the
// preheader and from multiple backedges), we must adjust the loop.
if (L->getNumBackEdges() != 1) {
// If this is really a nested loop, rip it out into a child loop.
if (Loop *NL = SeparateNestedLoop(L)) {
++NumNested;
// This is a big restructuring change, reprocess the whole loop.
ProcessLoop(NL);
return true;
}
InsertUniqueBackedgeBlock(L);
NumInserted++;
Changed = true;
@ -198,8 +209,9 @@ BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
// Check to see if the values being merged into the new block need PHI
// nodes. If so, insert them.
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
PHINode *PN = dyn_cast<PHINode>(I); ) {
++I;
// Check to see if all of the values coming in are the same. If so, we
// don't need to create a new PHI node.
Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
@ -216,7 +228,7 @@ BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
// Move all of the edges from blocks outside the loop to the new PHI
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
Value *V = PN->removeIncomingValue(Preds[i]);
Value *V = PN->removeIncomingValue(Preds[i], false);
NewPHI->addIncoming(V, Preds[i]);
}
InVal = NewPHI;
@ -230,6 +242,12 @@ BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
// Add an incoming value to the PHI node in the loop for the preheader
// edge.
PN->addIncoming(InVal, NewBB);
// Can we eliminate this phi node now?
if (Value *V = hasConstantValue(PN)) {
PN->replaceAllUsesWith(V);
BB->getInstList().erase(PN);
}
}
// Now that the PHI nodes are updated, actually move the edges from
@ -382,6 +400,9 @@ void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
}
}
/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
/// blocks. This method is used to split exit blocks that have predecessors
/// outside of the loop.
void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
DominatorSet &DS = getAnalysis<DominatorSet>();
assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
@ -409,6 +430,175 @@ void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
}
/// AddBlockAndPredsToSet - Add the specified block, and all of its
/// predecessors, to the specified set, if it's not already in there. Stop
/// predecessor traversal when we reach StopBlock.
static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
std::set<BasicBlock*> &Blocks) {
if (!Blocks.insert(BB).second) return; // already processed.
if (BB == StopBlock) return; // Stop here!
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
AddBlockAndPredsToSet(*I, StopBlock, Blocks);
}
static void ReplaceExitBlocksOfLoopAndParents(Loop *L, BasicBlock *Old,
BasicBlock *New) {
if (!L->hasExitBlock(Old)) return;
L->changeExitBlock(Old, New);
ReplaceExitBlocksOfLoopAndParents(L->getParentLoop(), Old, New);
}
/// VerifyExitBlocks - This is a function which can be useful for hacking on the
/// LoopSimplify Code.
static void VerifyExitBlocks(Loop *L) {
std::vector<BasicBlock*> ExitBlocks;
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
BasicBlock *BB = L->getBlocks()[i];
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
if (!L->contains(*SI))
ExitBlocks.push_back(*SI);
}
std::vector<BasicBlock*> EB = L->getExitBlocks();
std::sort(EB.begin(), EB.end());
std::sort(ExitBlocks.begin(), ExitBlocks.end());
assert(EB == ExitBlocks && "Exit blocks were incorrectly updated!");
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
VerifyExitBlocks(*I);
}
/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
/// them out into a nested loop. This is important for code that looks like
/// this:
///
/// Loop:
/// ...
/// br cond, Loop, Next
/// ...
/// br cond2, Loop, Out
///
/// To identify this common case, we look at the PHI nodes in the header of the
/// loop. PHI nodes with unchanging values on one backedge correspond to values
/// that change in the "outer" loop, but not in the "inner" loop.
///
/// If we are able to separate out a loop, return the new outer loop that was
/// created.
///
Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
BasicBlock *Header = L->getHeader();
std::vector<BasicBlock*> OuterLoopPreds;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ) {
++I;
if (Value *V = hasConstantValue(PN)) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
Header->getInstList().erase(PN);
continue;
}
// Scan this PHI node looking for a use of the PHI node by itself.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == PN &&
L->contains(PN->getIncomingBlock(i))) {
// Wow, we found something tasty to remove. Pull out all predecessors
// that have varying values in the loop. This handles the case when a
// PHI node has multiple instances of itself as arguments.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) != PN ||
!L->contains(PN->getIncomingBlock(i)))
OuterLoopPreds.push_back(PN->getIncomingBlock(i));
goto FoundExtraction;
}
}
return 0; // Nothing looks appetizing to separate out
FoundExtraction:
BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
// Update dominator information (set, immdom, domtree, and domfrontier)
UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
// Create the new outer loop.
Loop *NewOuter = new Loop();
LoopInfo &LI = getAnalysis<LoopInfo>();
// Change the parent loop to use the outer loop as its child now.
if (Loop *Parent = L->getParentLoop())
Parent->replaceChildLoopWith(L, NewOuter);
else
LI.changeTopLevelLoop(L, NewOuter);
// This block is going to be our new header block: add it to this loop and all
// parent loops.
NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
// L is now a subloop of our outer loop.
NewOuter->addChildLoop(L);
// Add all of L's exit blocks to the outer loop.
for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
NewOuter->addExitBlock(L->getExitBlocks()[i]);
// Add temporary exit block entries for NewBB. Add one for each edge in L
// that goes to NewBB.
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
if (L->contains(*PI))
L->addExitBlock(NewBB);
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
NewOuter->addBlockEntry(L->getBlocks()[i]);
// Determine which blocks should stay in L and which should be moved out to
// the Outer loop now.
DominatorSet &DS = getAnalysis<DominatorSet>();
std::set<BasicBlock*> BlocksInL;
for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
if (DS.dominates(Header, *PI))
AddBlockAndPredsToSet(*PI, Header, BlocksInL);
// Scan all of the loop children of L, moving them to OuterLoop if they are
// not part of the inner loop.
for (Loop::iterator I = L->begin(); I != L->end(); )
if (BlocksInL.count((*I)->getHeader()))
++I; // Loop remains in L
else
NewOuter->addChildLoop(L->removeChildLoop(I));
// Now that we know which blocks are in L and which need to be moved to
// OuterLoop, move any blocks that need it.
for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
BasicBlock *BB = L->getBlocks()[i];
if (!BlocksInL.count(BB)) {
// Move this block to the parent, updating the exit blocks sets
L->removeBlockFromLoop(BB);
if (LI[BB] == L)
LI.changeLoopFor(BB, NewOuter);
--i;
}
}
// Check all subloops of this loop, replacing any exit blocks that got
// revectored with the new basic block.
for (pred_iterator I = pred_begin(NewBB), E = pred_end(NewBB); I != E; ++I)
if (NewOuter->contains(*I)) {
// Change any exit blocks that used to go to Header to go to NewBB
// instead.
ReplaceExitBlocksOfLoopAndParents((Loop*)LI[*I], Header, NewBB);
}
//VerifyExitBlocks(NewOuter);
return NewOuter;
}
/// InsertUniqueBackedgeBlock - This method is called when the specified loop
/// has more than one backedge in it. If this occurs, revector all of these
/// backedges to target a new basic block and have that block branch to the loop