Two bug fixes:

(1) Add edges for Values that are written by multiple m/c instructions
(2) Add edges for LLVM operands that are not machine operands (e.g., Call args)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@676 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-09-30 23:36:58 +00:00
parent aca997cbd7
commit 5316f8fa2f
2 changed files with 356 additions and 158 deletions

View File

@ -23,6 +23,18 @@
#include "llvm/Support/StringExtras.h" #include "llvm/Support/StringExtras.h"
#include <algorithm> #include <algorithm>
//*********************** Internal Data Structures *************************/
typedef vector< pair<SchedGraphNode*, unsigned int> > RefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
// //
// class SchedGraphEdge // class SchedGraphEdge
// //
@ -46,11 +58,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/ /*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink, SchedGraphNode* _sink,
Value* _val, const Value* _val,
DataDepOrderType _depOrderType, DataDepOrderType _depOrderType,
int _minDelay) int _minDelay)
: src(_src), : src(_src),
sink(_sink), sink(_sink),
depType(DefUseDep), depType(DefUseDep),
@ -64,11 +76,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/ /*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink, SchedGraphNode* _sink,
unsigned int _regNum, unsigned int _regNum,
DataDepOrderType _depOrderType, DataDepOrderType _depOrderType,
int _minDelay) int _minDelay)
: src(_src), : src(_src),
sink(_sink), sink(_sink),
depType(MachineRegister), depType(MachineRegister),
@ -85,7 +97,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink, SchedGraphNode* _sink,
ResourceId _resourceId, ResourceId _resourceId,
int _minDelay) int _minDelay)
: src(_src), : src(_src),
sink(_sink), sink(_sink),
depType(MachineResource), depType(MachineResource),
@ -467,18 +479,8 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
} }
typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class NodeToRegRefMap: public hash_map<int, RegRefVec> {
typedef hash_map<int, RegRefVec>:: iterator iterator;
typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
};
void void
SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap, SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target) const TargetMachine& target)
{ {
assert(bbVec.size() == 1 && "Only handling a single basic block here"); assert(bbVec.size() == 1 && "Only handling a single basic block here");
@ -489,49 +491,49 @@ SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
// Also assumes that two registers with different numbers are // Also assumes that two registers with different numbers are
// not aliased! // not aliased!
// //
for (NodeToRegRefMap::iterator I = regToRefVecMap.begin(); for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I) I != regToRefVecMap.end(); ++I)
{ {
int regNum = (*I).first; int regNum = (*I).first;
RegRefVec& regRefVec = (*I).second; RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block // regRefVec is ordered by control flow order in the basic block
int lastDefIdx = -1;
for (unsigned i=0; i < regRefVec.size(); ++i) for (unsigned i=0; i < regRefVec.size(); ++i)
{ {
SchedGraphNode* node = regRefVec[i].first; SchedGraphNode* node = regRefVec[i].first;
bool isDef = regRefVec[i].second; unsigned int opNum = regRefVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
{ // Each def gets an output edge from the last def for (unsigned p=0; p < i; ++p)
if (lastDefIdx > 0) {
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum, SchedGraphNode* prevNode = regRefVec[p].first;
SchedGraphEdge::OutputDep); if (prevNode != node)
{
// Also, an anti edge from all uses *since* the last def, unsigned int prevOpNum = regRefVec[p].second;
// But don't add edge from an instruction to itself! bool prevIsDef =
for (int u = 1 + lastDefIdx; u < (int) i; u++) prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
if (regRefVec[u].first != node)
new SchedGraphEdge(regRefVec[u].first, node, regNum, if (isDef)
SchedGraphEdge::AntiDep); new SchedGraphEdge(prevNode, node, regNum,
} (prevIsDef)? SchedGraphEdge::OutputDep
else : SchedGraphEdge::AntiDep);
{ // Each use gets a true edge from the last def else if (prevIsDef)
if (lastDefIdx > 0) new SchedGraphEdge(prevNode, node, regNum,
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum); SchedGraphEdge::TrueDep);
} }
} }
}
} }
} }
void void
SchedGraph::addSSAEdge(SchedGraphNode* node, SchedGraph::addSSAEdge(SchedGraphNode* node,
Value* val, const Value* val,
const TargetMachine& target) const TargetMachine& target)
{ {
if (!val->isInstruction()) return; if (!val->isInstruction()) return;
const Instruction* thisVMInstr = node->getInstr(); const Instruction* thisVMInstr = node->getInstr();
const Instruction* defVMInstr = val->castInstructionAsserting(); const Instruction* defVMInstr = val->castInstructionAsserting();
@ -562,38 +564,38 @@ SchedGraph::addSSAEdge(SchedGraphNode* node,
// if there is a node for it in the same graph, add an edge. // if there is a node for it in the same graph, add an edge.
SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]); SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
if (defNode != NULL && defNode != node) if (defNode != NULL && defNode != node)
(void) new SchedGraphEdge(defNode, node, val); (void) new SchedGraphEdge(defNode, node, val);
} }
} }
} }
void void
SchedGraph::addEdgesForInstruction(SchedGraphNode* node, SchedGraph::addEdgesForInstruction(const MachineInstr& minstr,
NodeToRegRefMap& regToRefVecMap, RegToRefVecMap& regToRefVecMap,
const TargetMachine& target) const TargetMachine& target)
{ {
const Instruction& instr = * node->getInstr(); // No dummy nodes here! SchedGraphNode* node = this->getGraphNodeForInstr(&minstr);
const MachineInstr& minstr = * node->getMachineInstr(); if (node == NULL)
return;
// Add incoming edges for the following: assert(node->getInstr() && "Should be no dummy nodes here!");
// (1) operands of the machine instruction, including hidden operands const Instruction& instr = * node->getInstr();
// (2) machine register dependences
// (3) other resource dependences for the machine instruction, if any // Add edges for all operands of the machine instruction.
// Also, note any uses or defs of machine registers. // Also, record all machine register references to add reg. deps. later.
// //
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++) for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
{ {
const MachineOperand& mop = minstr.getOperand(i); const MachineOperand& mop = minstr.getOperand(i);
// if this writes to a machine register other than the hardwired // if this writes to a machine register other than the hardwired
// "zero" register used on many processors, record the reference. // "zero" register, record the reference.
if (mop.getOperandType() == MachineOperand::MO_MachineRegister if (mop.getOperandType() == MachineOperand::MO_MachineRegister
&& (mop.getMachineRegNum() && (mop.getMachineRegNum()
== (unsigned) target.getRegInfo().getZeroRegNum())) != (unsigned) target.getRegInfo().getZeroRegNum()))
{ {
regToRefVecMap[mop.getMachineRegNum()]. regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node, i));
push_back(make_pair(node, i));
} }
// ignore all other def operands // ignore all other def operands
@ -621,10 +623,87 @@ SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
break; break;
} }
} }
// add all true, anti,
// and output dependences for this register. but ignore
// Add edges for values implicitly used by the machine instruction sequence
// for the VM instruction but not made explicit operands. Examples include
// function arguments to a Call instructions or the return value of a Ret
// instruction. We'll conservatively add the dependences to every machine
// machine instruction in the instruction sequence for this VM instr
// (at least for now, there is never more than one machine instr).
//
const vector<const Value*>& implicitUses =
instr.getMachineInstrVec().getImplicitUses();
for (unsigned i=0; i < implicitUses.size(); ++i)
addSSAEdge(node, implicitUses[i], target);
}
void
SchedGraph::addNonSSAEdgesForValue(const Instruction* instr,
const TargetMachine& target)
{
assert(instr->isInstruction());
if (instr->isPHINode())
return;
MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
const MachineInstrInfo& mii = target.getInstrInfo();
RefVec refVec;
for (unsigned i=0, N=mvec.size(); i < N; i++)
for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++)
{
const MachineOperand& op = mvec[i]->getOperand(o);
if ((op.getOperandType() == MachineOperand::MO_VirtualRegister ||
op.getOperandType() == MachineOperand::MO_CCRegister)
&& op.getVRegValue() == (Value*) instr)
{
// this operand is a definition or use of value `instr'
SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]);
assert(node && "No node for machine instruction in this BB?");
refVec.push_back(make_pair(node, o));
}
}
// refVec is ordered by control flow order of the machine instructions
for (unsigned i=0; i < refVec.size(); ++i)
{
SchedGraphNode* node = refVec[i].first;
unsigned int opNum = refVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
// add output and/or anti deps to this definition
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = refVec[p].first;
if (prevNode != node)
{
bool prevIsDef = prevNode->getMachineInstr()->
operandIsDefined(refVec[p].second);
new SchedGraphEdge(prevNode, node, SchedGraphEdge::DefUseDep,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
}
}
}
}
void
SchedGraph::buildNodesforVMInstr(const TargetMachine& target,
const Instruction* instr)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
} }
@ -649,37 +728,46 @@ SchedGraph::buildGraph(const TargetMachine& target)
// single basic block, hence the assertion. Each reference is identified // single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>. // by the pair: <node, operand-number>.
// //
NodeToRegRefMap regToRefVecMap; RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later. // Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, NULL, target); graphRoot = new SchedGraphNode(0, NULL, NULL, target);
graphLeaf = new SchedGraphNode(1, NULL, NULL, target); graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
//---------------------------------------------------------------- //----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block. // First add nodes for all the machine instructions in the basic block
// This greatly simplifies identifing which edges to add. // because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later. // Also, remember the load/store instructions to add memory deps later.
//---------------------------------------------------------------- //----------------------------------------------------------------
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{ {
const Instruction *instr = *II; const Instruction *instr = *II;
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++) // Build graph nodes for this VM instruction
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode())) buildNodesforVMInstr(target, instr);
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
// Remember the load/store instructions to add memory deps later.
if (instr->getOpcode() == Instruction::Load || if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store) instr->getOpcode() == Instruction::Store)
memVec.push_back(instr); memVec.push_back(instr);
} }
//---------------------------------------------------------------- //----------------------------------------------------------------
// Now add the edges. // Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//---------------------------------------------------------------- //----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block. // First, add edges to the terminator instruction of the basic block.
@ -689,10 +777,21 @@ SchedGraph::buildGraph(const TargetMachine& target)
this->addMemEdges(memVec, target); this->addMemEdges(memVec, target);
// Then add other edges for all instructions in the block. // Then add other edges for all instructions in the block.
for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI) // Do this in machine code order and find all references to machine regs.
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
addEdgesForInstruction(*mvec[i], regToRefVecMap, target);
// Since the code is no longer in SSA form, add output dep. edges
// between machine instructions that define the same Value, and anti-dep.
// edges from those to other machine instructions for the same VM instr.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
//
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{ {
SchedGraphNode* node = (*GI).second; const Instruction *instr = *II;
addEdgesForInstruction(node, regToRefVecMap, target); this->addNonSSAEdgesForValue(instr, target);
} }
// Then add edges for dependences on machine registers // Then add edges for dependences on machine registers

View File

@ -23,6 +23,18 @@
#include "llvm/Support/StringExtras.h" #include "llvm/Support/StringExtras.h"
#include <algorithm> #include <algorithm>
//*********************** Internal Data Structures *************************/
typedef vector< pair<SchedGraphNode*, unsigned int> > RefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
// //
// class SchedGraphEdge // class SchedGraphEdge
// //
@ -46,11 +58,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/ /*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink, SchedGraphNode* _sink,
Value* _val, const Value* _val,
DataDepOrderType _depOrderType, DataDepOrderType _depOrderType,
int _minDelay) int _minDelay)
: src(_src), : src(_src),
sink(_sink), sink(_sink),
depType(DefUseDep), depType(DefUseDep),
@ -64,11 +76,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/ /*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink, SchedGraphNode* _sink,
unsigned int _regNum, unsigned int _regNum,
DataDepOrderType _depOrderType, DataDepOrderType _depOrderType,
int _minDelay) int _minDelay)
: src(_src), : src(_src),
sink(_sink), sink(_sink),
depType(MachineRegister), depType(MachineRegister),
@ -85,7 +97,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink, SchedGraphNode* _sink,
ResourceId _resourceId, ResourceId _resourceId,
int _minDelay) int _minDelay)
: src(_src), : src(_src),
sink(_sink), sink(_sink),
depType(MachineResource), depType(MachineResource),
@ -467,18 +479,8 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
} }
typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class NodeToRegRefMap: public hash_map<int, RegRefVec> {
typedef hash_map<int, RegRefVec>:: iterator iterator;
typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
};
void void
SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap, SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target) const TargetMachine& target)
{ {
assert(bbVec.size() == 1 && "Only handling a single basic block here"); assert(bbVec.size() == 1 && "Only handling a single basic block here");
@ -489,49 +491,49 @@ SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
// Also assumes that two registers with different numbers are // Also assumes that two registers with different numbers are
// not aliased! // not aliased!
// //
for (NodeToRegRefMap::iterator I = regToRefVecMap.begin(); for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I) I != regToRefVecMap.end(); ++I)
{ {
int regNum = (*I).first; int regNum = (*I).first;
RegRefVec& regRefVec = (*I).second; RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block // regRefVec is ordered by control flow order in the basic block
int lastDefIdx = -1;
for (unsigned i=0; i < regRefVec.size(); ++i) for (unsigned i=0; i < regRefVec.size(); ++i)
{ {
SchedGraphNode* node = regRefVec[i].first; SchedGraphNode* node = regRefVec[i].first;
bool isDef = regRefVec[i].second; unsigned int opNum = regRefVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
{ // Each def gets an output edge from the last def for (unsigned p=0; p < i; ++p)
if (lastDefIdx > 0) {
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum, SchedGraphNode* prevNode = regRefVec[p].first;
SchedGraphEdge::OutputDep); if (prevNode != node)
{
// Also, an anti edge from all uses *since* the last def, unsigned int prevOpNum = regRefVec[p].second;
// But don't add edge from an instruction to itself! bool prevIsDef =
for (int u = 1 + lastDefIdx; u < (int) i; u++) prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
if (regRefVec[u].first != node)
new SchedGraphEdge(regRefVec[u].first, node, regNum, if (isDef)
SchedGraphEdge::AntiDep); new SchedGraphEdge(prevNode, node, regNum,
} (prevIsDef)? SchedGraphEdge::OutputDep
else : SchedGraphEdge::AntiDep);
{ // Each use gets a true edge from the last def else if (prevIsDef)
if (lastDefIdx > 0) new SchedGraphEdge(prevNode, node, regNum,
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum); SchedGraphEdge::TrueDep);
} }
} }
}
} }
} }
void void
SchedGraph::addSSAEdge(SchedGraphNode* node, SchedGraph::addSSAEdge(SchedGraphNode* node,
Value* val, const Value* val,
const TargetMachine& target) const TargetMachine& target)
{ {
if (!val->isInstruction()) return; if (!val->isInstruction()) return;
const Instruction* thisVMInstr = node->getInstr(); const Instruction* thisVMInstr = node->getInstr();
const Instruction* defVMInstr = val->castInstructionAsserting(); const Instruction* defVMInstr = val->castInstructionAsserting();
@ -562,38 +564,38 @@ SchedGraph::addSSAEdge(SchedGraphNode* node,
// if there is a node for it in the same graph, add an edge. // if there is a node for it in the same graph, add an edge.
SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]); SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
if (defNode != NULL && defNode != node) if (defNode != NULL && defNode != node)
(void) new SchedGraphEdge(defNode, node, val); (void) new SchedGraphEdge(defNode, node, val);
} }
} }
} }
void void
SchedGraph::addEdgesForInstruction(SchedGraphNode* node, SchedGraph::addEdgesForInstruction(const MachineInstr& minstr,
NodeToRegRefMap& regToRefVecMap, RegToRefVecMap& regToRefVecMap,
const TargetMachine& target) const TargetMachine& target)
{ {
const Instruction& instr = * node->getInstr(); // No dummy nodes here! SchedGraphNode* node = this->getGraphNodeForInstr(&minstr);
const MachineInstr& minstr = * node->getMachineInstr(); if (node == NULL)
return;
// Add incoming edges for the following: assert(node->getInstr() && "Should be no dummy nodes here!");
// (1) operands of the machine instruction, including hidden operands const Instruction& instr = * node->getInstr();
// (2) machine register dependences
// (3) other resource dependences for the machine instruction, if any // Add edges for all operands of the machine instruction.
// Also, note any uses or defs of machine registers. // Also, record all machine register references to add reg. deps. later.
// //
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++) for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
{ {
const MachineOperand& mop = minstr.getOperand(i); const MachineOperand& mop = minstr.getOperand(i);
// if this writes to a machine register other than the hardwired // if this writes to a machine register other than the hardwired
// "zero" register used on many processors, record the reference. // "zero" register, record the reference.
if (mop.getOperandType() == MachineOperand::MO_MachineRegister if (mop.getOperandType() == MachineOperand::MO_MachineRegister
&& (mop.getMachineRegNum() && (mop.getMachineRegNum()
== (unsigned) target.getRegInfo().getZeroRegNum())) != (unsigned) target.getRegInfo().getZeroRegNum()))
{ {
regToRefVecMap[mop.getMachineRegNum()]. regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node, i));
push_back(make_pair(node, i));
} }
// ignore all other def operands // ignore all other def operands
@ -621,10 +623,87 @@ SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
break; break;
} }
} }
// add all true, anti,
// and output dependences for this register. but ignore
// Add edges for values implicitly used by the machine instruction sequence
// for the VM instruction but not made explicit operands. Examples include
// function arguments to a Call instructions or the return value of a Ret
// instruction. We'll conservatively add the dependences to every machine
// machine instruction in the instruction sequence for this VM instr
// (at least for now, there is never more than one machine instr).
//
const vector<const Value*>& implicitUses =
instr.getMachineInstrVec().getImplicitUses();
for (unsigned i=0; i < implicitUses.size(); ++i)
addSSAEdge(node, implicitUses[i], target);
}
void
SchedGraph::addNonSSAEdgesForValue(const Instruction* instr,
const TargetMachine& target)
{
assert(instr->isInstruction());
if (instr->isPHINode())
return;
MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
const MachineInstrInfo& mii = target.getInstrInfo();
RefVec refVec;
for (unsigned i=0, N=mvec.size(); i < N; i++)
for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++)
{
const MachineOperand& op = mvec[i]->getOperand(o);
if ((op.getOperandType() == MachineOperand::MO_VirtualRegister ||
op.getOperandType() == MachineOperand::MO_CCRegister)
&& op.getVRegValue() == (Value*) instr)
{
// this operand is a definition or use of value `instr'
SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]);
assert(node && "No node for machine instruction in this BB?");
refVec.push_back(make_pair(node, o));
}
}
// refVec is ordered by control flow order of the machine instructions
for (unsigned i=0; i < refVec.size(); ++i)
{
SchedGraphNode* node = refVec[i].first;
unsigned int opNum = refVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
// add output and/or anti deps to this definition
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = refVec[p].first;
if (prevNode != node)
{
bool prevIsDef = prevNode->getMachineInstr()->
operandIsDefined(refVec[p].second);
new SchedGraphEdge(prevNode, node, SchedGraphEdge::DefUseDep,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
}
}
}
}
void
SchedGraph::buildNodesforVMInstr(const TargetMachine& target,
const Instruction* instr)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
} }
@ -649,37 +728,46 @@ SchedGraph::buildGraph(const TargetMachine& target)
// single basic block, hence the assertion. Each reference is identified // single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>. // by the pair: <node, operand-number>.
// //
NodeToRegRefMap regToRefVecMap; RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later. // Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, NULL, target); graphRoot = new SchedGraphNode(0, NULL, NULL, target);
graphLeaf = new SchedGraphNode(1, NULL, NULL, target); graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
//---------------------------------------------------------------- //----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block. // First add nodes for all the machine instructions in the basic block
// This greatly simplifies identifing which edges to add. // because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later. // Also, remember the load/store instructions to add memory deps later.
//---------------------------------------------------------------- //----------------------------------------------------------------
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{ {
const Instruction *instr = *II; const Instruction *instr = *II;
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++) // Build graph nodes for this VM instruction
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode())) buildNodesforVMInstr(target, instr);
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
// Remember the load/store instructions to add memory deps later.
if (instr->getOpcode() == Instruction::Load || if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store) instr->getOpcode() == Instruction::Store)
memVec.push_back(instr); memVec.push_back(instr);
} }
//---------------------------------------------------------------- //----------------------------------------------------------------
// Now add the edges. // Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//---------------------------------------------------------------- //----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block. // First, add edges to the terminator instruction of the basic block.
@ -689,10 +777,21 @@ SchedGraph::buildGraph(const TargetMachine& target)
this->addMemEdges(memVec, target); this->addMemEdges(memVec, target);
// Then add other edges for all instructions in the block. // Then add other edges for all instructions in the block.
for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI) // Do this in machine code order and find all references to machine regs.
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
addEdgesForInstruction(*mvec[i], regToRefVecMap, target);
// Since the code is no longer in SSA form, add output dep. edges
// between machine instructions that define the same Value, and anti-dep.
// edges from those to other machine instructions for the same VM instr.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
//
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{ {
SchedGraphNode* node = (*GI).second; const Instruction *instr = *II;
addEdgesForInstruction(node, regToRefVecMap, target); this->addNonSSAEdgesForValue(instr, target);
} }
// Then add edges for dependences on machine registers // Then add edges for dependences on machine registers