mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-07-15 19:24:33 +00:00
Enhance the sinking code to handle diamond patterns. Patch by
Carlo Alberto Ferraris. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157736 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -27,6 +27,7 @@
|
|||||||
using namespace llvm;
|
using namespace llvm;
|
||||||
|
|
||||||
STATISTIC(NumSunk, "Number of instructions sunk");
|
STATISTIC(NumSunk, "Number of instructions sunk");
|
||||||
|
STATISTIC(NumSinkIter, "Number of sinking iterations");
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class Sinking : public FunctionPass {
|
class Sinking : public FunctionPass {
|
||||||
@@ -55,6 +56,7 @@ namespace {
|
|||||||
bool ProcessBlock(BasicBlock &BB);
|
bool ProcessBlock(BasicBlock &BB);
|
||||||
bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
|
bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
|
||||||
bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
|
bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
|
||||||
|
bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
|
||||||
};
|
};
|
||||||
} // end anonymous namespace
|
} // end anonymous namespace
|
||||||
|
|
||||||
@@ -98,20 +100,19 @@ bool Sinking::runOnFunction(Function &F) {
|
|||||||
LI = &getAnalysis<LoopInfo>();
|
LI = &getAnalysis<LoopInfo>();
|
||||||
AA = &getAnalysis<AliasAnalysis>();
|
AA = &getAnalysis<AliasAnalysis>();
|
||||||
|
|
||||||
bool EverMadeChange = false;
|
bool MadeChange, EverMadeChange = false;
|
||||||
|
|
||||||
while (1) {
|
|
||||||
bool MadeChange = false;
|
|
||||||
|
|
||||||
|
do {
|
||||||
|
MadeChange = false;
|
||||||
|
DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
|
||||||
// Process all basic blocks.
|
// Process all basic blocks.
|
||||||
for (Function::iterator I = F.begin(), E = F.end();
|
for (Function::iterator I = F.begin(), E = F.end();
|
||||||
I != E; ++I)
|
I != E; ++I)
|
||||||
MadeChange |= ProcessBlock(*I);
|
MadeChange |= ProcessBlock(*I);
|
||||||
|
EverMadeChange |= MadeChange;
|
||||||
|
NumSinkIter++;
|
||||||
|
} while (MadeChange);
|
||||||
|
|
||||||
// If this iteration over the code changed anything, keep iterating.
|
|
||||||
if (!MadeChange) break;
|
|
||||||
EverMadeChange = true;
|
|
||||||
}
|
|
||||||
return EverMadeChange;
|
return EverMadeChange;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -174,6 +175,43 @@ static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// IsAcceptableTarget - Return true if it is possible to sink the instruction
|
||||||
|
/// in the specified basic block.
|
||||||
|
bool Sinking::IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const {
|
||||||
|
assert(Inst && "Instruction to be sunk is null");
|
||||||
|
assert(SuccToSinkTo && "Candidate sink target is null");
|
||||||
|
|
||||||
|
// It is not possible to sink an instruction into its own block. This can
|
||||||
|
// happen with loops.
|
||||||
|
if (Inst->getParent() == SuccToSinkTo)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// If the block has multiple predecessors, this would introduce computation
|
||||||
|
// on different code paths. We could split the critical edge, but for now we
|
||||||
|
// just punt.
|
||||||
|
// FIXME: Split critical edges if not backedges.
|
||||||
|
if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
|
||||||
|
// We cannot sink a load across a critical edge - there may be stores in
|
||||||
|
// other code paths.
|
||||||
|
if (!isSafeToSpeculativelyExecute(Inst))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// We don't want to sink across a critical edge if we don't dominate the
|
||||||
|
// successor. We could be introducing calculations to new code paths.
|
||||||
|
if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// Don't sink instructions into a loop.
|
||||||
|
Loop *succ = LI->getLoopFor(SuccToSinkTo), *cur = LI->getLoopFor(Inst->getParent());
|
||||||
|
if (succ != 0 && succ != cur)
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Finally, check that all the uses of the instruction are actually
|
||||||
|
// dominated by the candidate
|
||||||
|
return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
|
||||||
|
}
|
||||||
|
|
||||||
/// SinkInstruction - Determine whether it is safe to sink the specified machine
|
/// SinkInstruction - Determine whether it is safe to sink the specified machine
|
||||||
/// instruction out of its current block into a successor.
|
/// instruction out of its current block into a successor.
|
||||||
bool Sinking::SinkInstruction(Instruction *Inst,
|
bool Sinking::SinkInstruction(Instruction *Inst,
|
||||||
@@ -190,85 +228,41 @@ bool Sinking::SinkInstruction(Instruction *Inst,
|
|||||||
// "x = y + z" down if it kills y and z would increase the live ranges of y
|
// "x = y + z" down if it kills y and z would increase the live ranges of y
|
||||||
// and z and only shrink the live range of x.
|
// and z and only shrink the live range of x.
|
||||||
|
|
||||||
// Loop over all the operands of the specified instruction. If there is
|
|
||||||
// anything we can't handle, bail out.
|
|
||||||
BasicBlock *ParentBlock = Inst->getParent();
|
|
||||||
|
|
||||||
// SuccToSinkTo - This is the successor to sink this instruction to, once we
|
// SuccToSinkTo - This is the successor to sink this instruction to, once we
|
||||||
// decide.
|
// decide.
|
||||||
BasicBlock *SuccToSinkTo = 0;
|
BasicBlock *SuccToSinkTo = 0;
|
||||||
|
|
||||||
// FIXME: This picks a successor to sink into based on having one
|
|
||||||
// successor that dominates all the uses. However, there are cases where
|
|
||||||
// sinking can happen but where the sink point isn't a successor. For
|
|
||||||
// example:
|
|
||||||
// x = computation
|
|
||||||
// if () {} else {}
|
|
||||||
// use x
|
|
||||||
// the instruction could be sunk over the whole diamond for the
|
|
||||||
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
|
|
||||||
// after that.
|
|
||||||
|
|
||||||
// Instructions can only be sunk if all their uses are in blocks
|
// Instructions can only be sunk if all their uses are in blocks
|
||||||
// dominated by one of the successors.
|
// dominated by one of the successors.
|
||||||
// Look at all the successors and decide which one
|
// Look at all the postdominators and see if we can sink it in one.
|
||||||
// we should sink to.
|
DomTreeNode *DTN = DT->getNode(Inst->getParent());
|
||||||
for (succ_iterator SI = succ_begin(ParentBlock),
|
for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
|
||||||
E = succ_end(ParentBlock); SI != E; ++SI) {
|
I != E && SuccToSinkTo == 0; ++I) {
|
||||||
if (AllUsesDominatedByBlock(Inst, *SI)) {
|
BasicBlock *Candidate = (*I)->getBlock();
|
||||||
SuccToSinkTo = *SI;
|
if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
|
||||||
break;
|
IsAcceptableTarget(Inst, Candidate))
|
||||||
|
SuccToSinkTo = Candidate;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// If no suitable postdominator was found, look at all the successors and
|
||||||
|
// decide which one we should sink to, if any.
|
||||||
|
for (succ_iterator I = succ_begin(Inst->getParent()),
|
||||||
|
E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) {
|
||||||
|
if (IsAcceptableTarget(Inst, *I))
|
||||||
|
SuccToSinkTo = *I;
|
||||||
}
|
}
|
||||||
|
|
||||||
// If we couldn't find a block to sink to, ignore this instruction.
|
// If we couldn't find a block to sink to, ignore this instruction.
|
||||||
if (SuccToSinkTo == 0)
|
if (SuccToSinkTo == 0)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
// It is not possible to sink an instruction into its own block. This can
|
DEBUG(dbgs() << "Sink" << *Inst << " (";
|
||||||
// happen with loops.
|
WriteAsOperand(dbgs(), Inst->getParent(), false);
|
||||||
if (Inst->getParent() == SuccToSinkTo)
|
dbgs() << " -> ";
|
||||||
return false;
|
WriteAsOperand(dbgs(), SuccToSinkTo, false);
|
||||||
|
dbgs() << ")\n");
|
||||||
DEBUG(dbgs() << "Sink instr " << *Inst);
|
|
||||||
DEBUG(dbgs() << "to block ";
|
|
||||||
WriteAsOperand(dbgs(), SuccToSinkTo, false));
|
|
||||||
|
|
||||||
// If the block has multiple predecessors, this would introduce computation on
|
|
||||||
// a path that it doesn't already exist. We could split the critical edge,
|
|
||||||
// but for now we just punt.
|
|
||||||
// FIXME: Split critical edges if not backedges.
|
|
||||||
if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
|
|
||||||
// We cannot sink a load across a critical edge - there may be stores in
|
|
||||||
// other code paths.
|
|
||||||
if (!isSafeToSpeculativelyExecute(Inst)) {
|
|
||||||
DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// We don't want to sink across a critical edge if we don't dominate the
|
|
||||||
// successor. We could be introducing calculations to new code paths.
|
|
||||||
if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
|
|
||||||
DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Don't sink instructions into a loop.
|
|
||||||
if (LI->isLoopHeader(SuccToSinkTo)) {
|
|
||||||
DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Otherwise we are OK with sinking along a critical edge.
|
|
||||||
DEBUG(dbgs() << "Sinking along critical edge.\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
// Determine where to insert into. Skip phi nodes.
|
|
||||||
BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
|
|
||||||
while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
|
|
||||||
++InsertPos;
|
|
||||||
|
|
||||||
// Move the instruction.
|
// Move the instruction.
|
||||||
Inst->moveBefore(InsertPos);
|
Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt());
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
@@ -36,3 +36,29 @@ true:
|
|||||||
false:
|
false:
|
||||||
ret i32 0
|
ret i32 0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
; Sink to the nearest post-dominator
|
||||||
|
|
||||||
|
; CHECK: @diamond
|
||||||
|
; CHECK: X:
|
||||||
|
; CHECK-NEXT: phi
|
||||||
|
; CHECK-NEXT: mul nsw
|
||||||
|
; CHECK-NEXT: sub
|
||||||
|
|
||||||
|
define i32 @diamond(i32 %a, i32 %b, i32 %c) {
|
||||||
|
%1 = mul nsw i32 %c, %b
|
||||||
|
%2 = icmp sgt i32 %a, 0
|
||||||
|
br i1 %2, label %B0, label %B1
|
||||||
|
|
||||||
|
B0: ; preds = %0
|
||||||
|
br label %X
|
||||||
|
|
||||||
|
B1: ; preds = %0
|
||||||
|
br label %X
|
||||||
|
|
||||||
|
X: ; preds = %5, %3
|
||||||
|
%.01 = phi i32 [ %c, %B0 ], [ %a, %B1 ]
|
||||||
|
%R = sub i32 %1, %.01
|
||||||
|
ret i32 %R
|
||||||
|
}
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user