mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-08-09 11:25:55 +00:00
DOC: Add a webpage that describes the loop and bb vectorizers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170503 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
219
docs/Vectorizers.rst
Normal file
219
docs/Vectorizers.rst
Normal file
@@ -0,0 +1,219 @@
|
|||||||
|
==========================
|
||||||
|
Auto-Vectorization in LLVM
|
||||||
|
==========================
|
||||||
|
|
||||||
|
LLVM has two vectorizers: The *Loop Vectorizer*, which operates on Loops,
|
||||||
|
and the *Basic Block Vectorizer*, which optimizes straight-line code. These
|
||||||
|
vectorizers focus on different optimization opportunities and use different
|
||||||
|
techniques. The BB vectorizer merges multiple scalars that are found in the
|
||||||
|
code into vectors while the Loop Vectorizer widens instructions in the
|
||||||
|
original loop to operate on multiple consecutive loop iterations.
|
||||||
|
|
||||||
|
The Loop Vectorizer
|
||||||
|
===================
|
||||||
|
|
||||||
|
LLVM’s Loop Vectorizer is now available and will be useful for many people.
|
||||||
|
It is not enabled by default, but can be enabled through clang using the
|
||||||
|
command line flag:
|
||||||
|
|
||||||
|
.. code-block:: console
|
||||||
|
|
||||||
|
$ clang -fvectorize file.c
|
||||||
|
|
||||||
|
We plan to enable the Loop Vectorizer by default as part of the LLVM 3.3 release.
|
||||||
|
|
||||||
|
Features
|
||||||
|
^^^^^^^^^
|
||||||
|
|
||||||
|
The LLVM Loop Vectorizer has a number of features that allow it to vectorize
|
||||||
|
complex loops.
|
||||||
|
|
||||||
|
Loops with unknown trip count
|
||||||
|
------------------------------
|
||||||
|
|
||||||
|
The Loop Vectorizer supports loops with an unknown trip count.
|
||||||
|
In the loop below, the iteration ``start`` and ``finish`` points are unknown,
|
||||||
|
and the Loop Vectorizer has a mechanism to vectorize loops that do not start
|
||||||
|
at zero. In this example, ‘n’ may not be a multiple of the vector width, and
|
||||||
|
the vectorizer has to execute the last few iterations as scalar code. Keeping
|
||||||
|
a scalar copy of the loop increases the code size.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
void bar(float *A, float* B, float K, int start, int end) {
|
||||||
|
for (int i = start; i < end; ++i)
|
||||||
|
A[i] *= B[i] + K;
|
||||||
|
}
|
||||||
|
|
||||||
|
Runtime Checks of Pointers
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
In the example below, if the pointers A and B point to consecutive addresses,
|
||||||
|
then it is illegal to vectorize the code because some elements of A will be
|
||||||
|
written before they are read from array B.
|
||||||
|
|
||||||
|
Some programmers use the 'restrict' keyword to notify the compiler that the
|
||||||
|
pointers are disjointed, but in our example, the Loop Vectorizer has no way of
|
||||||
|
knowing that the pointers A and B are unique. The Loop Vectorizer handles this
|
||||||
|
loop by placing code that checks, at runtime, if the arrays A and B point to
|
||||||
|
disjointed memory locations. If arrays A and B overlap, then the scalar version
|
||||||
|
of the loop is executed.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
void bar(float *A, float* B, float K, int n) {
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
A[i] *= B[i] + K;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Reductions
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
In this example the ``sum`` variable is used by consecutive iterations of
|
||||||
|
the loop. Normally, this would prevent vectorization, but the vectorizer can
|
||||||
|
detect that ‘sum’ is a reduction variable. The variable ‘sum’ becomes a vector
|
||||||
|
of integers, and at the end of the loop the elements of the array are added
|
||||||
|
together to create the correct result. We support a number of different
|
||||||
|
reduction operations, such as addition, multiplication, XOR, AND and OR.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int foo(int *A, int *B, int n) {
|
||||||
|
unsigned sum = 0;
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
sum += A[i] + 5;
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
Inductions
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
In this example the value of the induction variable ``i`` is saved into an
|
||||||
|
array. The Loop Vectorizer knows to vectorize induction variables.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
void bar(float *A, float* B, float K, int n) {
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
A[i] = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
If Conversion
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
The Loop Vectorizer is able to "flatten" the IF statement in the code and
|
||||||
|
generate a single stream of instructions. The Loop Vectorizer supports any
|
||||||
|
control flow in the innermost loop. The innermost loop may contain complex
|
||||||
|
nesting of IFs, ELSEs and even GOTOs.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int foo(int *A, int *B, int n) {
|
||||||
|
unsigned sum = 0;
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
if (A[i] > B[i])
|
||||||
|
sum += A[i] + 5;
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
Pointer Induction Variables
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
This example uses the "accumulate" function of the standard c++ library. This
|
||||||
|
loop uses C++ iterators, which are pointers, and not integer indices.
|
||||||
|
The Loop Vectorizer detects pointer induction variables and can vectorize
|
||||||
|
this loop. This feature is important because many C++ programs use iterators.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int baz(int *A, int n) {
|
||||||
|
return std::accumulate(A, A + n, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
Reverse Iterators
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
The Loop Vectorizer can vectorize loops that count backwards.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int foo(int *A, int *B, int n) {
|
||||||
|
for (int i = n; i > 0; --i)
|
||||||
|
A[i] +=1;
|
||||||
|
}
|
||||||
|
|
||||||
|
Scatter / Gather
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
The Loop Vectorizer can generate code diverging memory indices that result in
|
||||||
|
scatter/gather memory accesses.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int foo(int *A, int *B, int n, int k) {
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
A[i*7] += B[i*k];
|
||||||
|
}
|
||||||
|
|
||||||
|
Vectorization of programs with Mixed Types
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
|
||||||
|
cost model can estimate the cost of the type conversion and decide if
|
||||||
|
vectorization is profitable.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int foo(int *A, char *B, int n, int k) {
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
A[i] += 4 * B[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
Vectorization of function calls
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
The Loop Vectorize can vectorize intrinsic math functions.
|
||||||
|
See the table below for a list of these functions.
|
||||||
|
|
||||||
|
+-----+-----+---------+
|
||||||
|
| pow | exp | exp2 |
|
||||||
|
+-----+-----+---------+
|
||||||
|
| sin | cos | sqrt |
|
||||||
|
+-----+-----+---------+
|
||||||
|
| log |log2 | log10 |
|
||||||
|
+-----+-----+---------+
|
||||||
|
|fabs |floor| ceil |
|
||||||
|
+-----+-----+---------+
|
||||||
|
|fma |trunc|nearbyint|
|
||||||
|
+-----+-----+---------+
|
||||||
|
|
||||||
|
The Basic Block Vectorizer
|
||||||
|
==========================
|
||||||
|
|
||||||
|
The Basic Block Vectorizer is not enabled by default, but it can be enabled
|
||||||
|
through clang using the command line flag:
|
||||||
|
|
||||||
|
.. code-block:: console
|
||||||
|
|
||||||
|
$ clang -fslp-vectorize file.c
|
||||||
|
|
||||||
|
The goal of basic-block vectorization (a.k.a. superword-level parallelism) is
|
||||||
|
to combine similar independent instructions within simple control-flow regions
|
||||||
|
into vector instructions. Memory accesses, arithemetic operations, comparison
|
||||||
|
operations and some math functions can all be vectorized using this technique
|
||||||
|
(subject to the capabilities of the target architecture).
|
||||||
|
|
||||||
|
For example, the following function performs very similar operations on its
|
||||||
|
inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
|
||||||
|
into vector operations.
|
||||||
|
|
||||||
|
.. code-block:: c++
|
||||||
|
|
||||||
|
int foo(int a1, int a2, int b1, int b2) {
|
||||||
|
int r1 = a1*(a1 + b1)/b1 + 50*b1/a1;
|
||||||
|
int r2 = a2*(a2 + b2)/b2 + 50*b2/a2;
|
||||||
|
return r1 + r2;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
@@ -21,6 +21,7 @@ Subsystem Documentation
|
|||||||
HowToUseInstrMappings
|
HowToUseInstrMappings
|
||||||
SystemLibrary
|
SystemLibrary
|
||||||
SourceLevelDebugging
|
SourceLevelDebugging
|
||||||
|
Vectorizers
|
||||||
WritingAnLLVMBackend
|
WritingAnLLVMBackend
|
||||||
GarbageCollection
|
GarbageCollection
|
||||||
WritingAnLLVMPass
|
WritingAnLLVMPass
|
||||||
@@ -61,6 +62,10 @@ Subsystem Documentation
|
|||||||
|
|
||||||
This document describes the design and philosophy behind the LLVM
|
This document describes the design and philosophy behind the LLVM
|
||||||
source-level debugger.
|
source-level debugger.
|
||||||
|
|
||||||
|
* :doc:`Vectorization in LLVM <Vectorizers>`
|
||||||
|
|
||||||
|
This document describes the current status of vectorization in LLVM.
|
||||||
|
|
||||||
* :ref:`exception_handling`
|
* :ref:`exception_handling`
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user