1. Provide more detail in file comment.

2. Move comments for methods to .h file, delete them in .cpp file.
3. All places that were doing manual clear of high order bits now call the
   clearUnusedBits() method in order to not depend on undefined behavior
   of the >> operator when the number of bits shifted equals the word size.
4. Reduced # of loc by using the new result of clearUnusedBits() method.
5. Simplified logic (decreased indentation) in a few places.
6. Added code comments to larger functions that needed them.
7. Added FIXME notes about weak implementations of things (e.g. bit-by-bit
   shift right is sub-optimal).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34603 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2007-02-25 19:32:03 +00:00
parent c68c2243dc
commit 5d0d05c9b8

View File

@ -8,8 +8,8 @@
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
// This file implements a class to represent arbitrary precision integer
// constant values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//
@ -26,8 +26,8 @@
using namespace llvm;
// A utility function for allocating memory, checking for allocation failures,
// and ensuring the contents are zeroed.
/// A utility function for allocating memory, checking for allocation failures,
/// and ensuring the contents are zeroed.
inline static uint64_t* getClearedMemory(uint32_t numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
@ -35,8 +35,8 @@ inline static uint64_t* getClearedMemory(uint32_t numWords) {
return result;
}
// A utility function for allocating memory and checking for allocation failure.
// The content is not zero'd
/// A utility function for allocating memory and checking for allocation
/// failure. The content is not zeroed.
inline static uint64_t* getMemory(uint32_t numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
@ -48,11 +48,12 @@ APInt::APInt(uint32_t numBits, uint64_t val)
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
if (isSingleWord())
VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
VAL = val;
else {
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
}
clearUnusedBits();
}
APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
@ -124,7 +125,7 @@ APInt& APInt::operator=(uint64_t RHS) {
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
static uint64_t add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
for (uint32_t i = 0; i < len; ++i) {
dest[i] = y + x[i];
if (dest[i] < y)
@ -143,8 +144,7 @@ APInt& APInt::operator++() {
++VAL;
else
add_1(pVal, pVal, getNumWords(), 1);
clearUnusedBits();
return *this;
return clearUnusedBits();
}
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
@ -152,8 +152,8 @@ APInt& APInt::operator++() {
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
static uint64_t sub_1(uint64_t x[], uint32_t len,
uint64_t y) {
/// @returns the borrow out of the subtraction
static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
for (uint32_t i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
@ -164,7 +164,7 @@ static uint64_t sub_1(uint64_t x[], uint32_t len,
break; // Remaining digits are unchanged so exit early
}
}
return y;
return bool(y);
}
/// @brief Prefix decrement operator. Decrements the APInt by one.
@ -173,12 +173,13 @@ APInt& APInt::operator--() {
--VAL;
else
sub_1(pVal, getNumWords(), 1);
clearUnusedBits();
return *this;
return clearUnusedBits();
}
/// add - This function adds the integer array x[] by integer array
/// y[] and returns the carry.
/// add - This function adds the integer array x to the integer array Y and
/// places the result in dest.
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
uint32_t len) {
bool carry = false;
@ -190,8 +191,9 @@ static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
return carry;
}
/// @brief Addition assignment operator. Adds this APInt by the given APInt&
/// RHS and assigns the result to this APInt.
/// Adds the RHS APint to this APInt.
/// @returns this, after addition of RHS.
/// @brief Addition assignment operator.
APInt& APInt::operator+=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
@ -199,12 +201,12 @@ APInt& APInt::operator+=(const APInt& RHS) {
else {
add(pVal, pVal, RHS.pVal, getNumWords());
}
clearUnusedBits();
return *this;
return clearUnusedBits();
}
/// sub - This function subtracts the integer array x[] by
/// integer array y[], and returns the borrow-out.
/// Subtracts the integer array y from the integer array x
/// @returns returns the borrow out.
/// @brief Generalized subtraction of 64-bit integer arrays.
static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
uint32_t len) {
bool borrow = false;
@ -216,29 +218,33 @@ static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
return borrow;
}
/// @brief Subtraction assignment operator. Subtracts this APInt by the given
/// APInt &RHS and assigns the result to this APInt.
/// Subtracts the RHS APInt from this APInt
/// @returns this, after subtraction
/// @brief Subtraction assignment operator.
APInt& APInt::operator-=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
VAL -= RHS.VAL;
else
sub(pVal, pVal, RHS.pVal, getNumWords());
clearUnusedBits();
return *this;
return clearUnusedBits();
}
/// mul_1 - This function performs the multiplication operation on a
/// large integer (represented as an integer array) and a uint64_t integer.
/// @returns the carry of the multiplication.
/// Multiplies an integer array, x by a a uint64_t integer and places the result
/// into dest.
/// @returns the carry out of the multiplication.
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
// Split y into high 32-bit part (hy) and low 32-bit part (ly)
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
uint64_t carry = 0, lx, hx;
uint64_t carry = 0;
// For each digit of x.
for (uint32_t i = 0; i < len; ++i) {
lx = x[i] & 0xffffffffULL;
hx = x[i] >> 32;
// hasCarry - A flag to indicate if has carry.
// Split x into high and low words
uint64_t lx = x[i] & 0xffffffffULL;
uint64_t hx = x[i] >> 32;
// hasCarry - A flag to indicate if there is a carry to the next digit.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
@ -256,13 +262,12 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
/// mul - This function multiplies integer array x[] by integer array y[] and
/// stores the result into integer array dest[].
/// Note the array dest[]'s size should no less than xlen + ylen.
/// Multiplies integer array x by integer array y and stores the result into
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
/// @brief Generalized multiplicate of integer arrays.
static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
uint32_t ylen) {
dest[xlen] = mul_1(dest, x, xlen, y[0]);
@ -293,8 +298,6 @@ static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
}
}
/// @brief Multiplication assignment operator. Multiplies this APInt by the
/// given APInt& RHS and assigns the result to this APInt.
APInt& APInt::operator*=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
@ -336,8 +339,6 @@ APInt& APInt::operator*=(const APInt& RHS) {
return *this;
}
/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator&=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
@ -350,8 +351,6 @@ APInt& APInt::operator&=(const APInt& RHS) {
return *this;
}
/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator|=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
@ -364,8 +363,6 @@ APInt& APInt::operator|=(const APInt& RHS) {
return *this;
}
/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator^=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
@ -376,56 +373,47 @@ APInt& APInt::operator^=(const APInt& RHS) {
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
this->clearUnusedBits();
return *this;
return clearUnusedBits();
}
/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator&(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL & RHS.VAL);
APInt Result(*this);
uint32_t numWords = getNumWords();
uint64_t* val = getMemory(numWords);
for (uint32_t i = 0; i < numWords; ++i)
Result.pVal[i] &= RHS.pVal[i];
return Result;
val[i] = pVal[i] & RHS.pVal[i];
return APInt(val, getBitWidth());
}
/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator|(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL | RHS.VAL);
APInt Result(*this);
uint32_t numWords = getNumWords();
uint64_t *val = getMemory(numWords);
for (uint32_t i = 0; i < numWords; ++i)
Result.pVal[i] |= RHS.pVal[i];
return Result;
val[i] = pVal[i] | RHS.pVal[i];
return APInt(val, getBitWidth());
}
/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator^(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
APInt Result(BitWidth, VAL ^ RHS.VAL);
Result.clearUnusedBits();
return Result;
}
APInt Result(*this);
if (isSingleWord())
return APInt(BitWidth, VAL ^ RHS.VAL).clearUnusedBits();
uint32_t numWords = getNumWords();
uint64_t *val = getMemory(numWords);
for (uint32_t i = 0; i < numWords; ++i)
Result.pVal[i] ^= RHS.pVal[i];
return Result;
val[i] = pVal[i] ^ RHS.pVal[i];
// 0^0==1 so clear the high bits in case they got set.
return APInt(val, getBitWidth()).clearUnusedBits();
}
/// @brief Logical negation operator. Performs logical negation operation on
/// this APInt.
bool APInt::operator !() const {
if (isSingleWord())
return !VAL;
@ -436,77 +424,61 @@ bool APInt::operator !() const {
return true;
}
/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
/// RHS.
APInt APInt::operator*(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
APInt Result(BitWidth, VAL * RHS.VAL);
Result.clearUnusedBits();
return Result;
}
if (isSingleWord())
return APInt(BitWidth, VAL * RHS.VAL).clearUnusedBits();
APInt Result(*this);
Result *= RHS;
Result.clearUnusedBits();
return Result;
return Result.clearUnusedBits();
}
/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
APInt APInt::operator+(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
APInt Result(BitWidth, VAL + RHS.VAL);
Result.clearUnusedBits();
return Result;
}
if (isSingleWord())
return APInt(BitWidth, VAL + RHS.VAL).clearUnusedBits();
APInt Result(BitWidth, 0);
add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Result.clearUnusedBits();
return Result;
return Result.clearUnusedBits();
}
/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
APInt APInt::operator-(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
APInt Result(BitWidth, VAL - RHS.VAL);
Result.clearUnusedBits();
return Result;
}
if (isSingleWord())
return APInt(BitWidth, VAL - RHS.VAL).clearUnusedBits();
APInt Result(BitWidth, 0);
sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Result.clearUnusedBits();
return Result;
return Result.clearUnusedBits();
}
/// @brief Array-indexing support.
bool APInt::operator[](uint32_t bitPosition) const {
return (maskBit(bitPosition) & (isSingleWord() ?
VAL : pVal[whichWord(bitPosition)])) != 0;
return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
}
/// @brief Equality operator. Compare this APInt with the given APInt& RHS
/// for the validity of the equality relationship.
bool APInt::operator==(const APInt& RHS) const {
if (isSingleWord())
return VAL == RHS.VAL;
// Get some facts about the number of bits used in the two operands.
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
// If the number of bits isn't the same, they aren't equal
if (n1 != n2)
return false;
// If the number of bits fits in a word, we only need to compare the low word.
if (n1 <= APINT_BITS_PER_WORD)
return pVal[0] == RHS.pVal[0];
// Otherwise, compare everything
for (int i = whichWord(n1 - 1); i >= 0; --i)
if (pVal[i] != RHS.pVal[i])
return false;
return true;
}
/// @brief Equality operator. Compare this APInt with the given uint64_t value
/// for the validity of the equality relationship.
bool APInt::operator==(uint64_t Val) const {
if (isSingleWord())
return VAL == Val;
@ -518,29 +490,37 @@ bool APInt::operator==(uint64_t Val) const {
return false;
}
/// @brief Unsigned less than comparison
bool APInt::ult(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
if (isSingleWord())
return VAL < RHS.VAL;
else {
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
if (n1 < n2)
return true;
else if (n2 < n1)
// Get active bit length of both operands
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
// If magnitude of LHS is less than RHS, return true.
if (n1 < n2)
return true;
// If magnitude of RHS is greather than LHS, return false.
if (n2 < n1)
return false;
// If they bot fit in a word, just compare the low order word
if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
return pVal[0] < RHS.pVal[0];
// Otherwise, compare all words
for (int i = whichWord(n1 - 1); i >= 0; --i) {
if (pVal[i] > RHS.pVal[i])
return false;
else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
return pVal[0] < RHS.pVal[0];
for (int i = whichWord(n1 - 1); i >= 0; --i) {
if (pVal[i] > RHS.pVal[i]) return false;
else if (pVal[i] < RHS.pVal[i]) return true;
}
if (pVal[i] < RHS.pVal[i])
return true;
}
return false;
}
/// @brief Signed less than comparison
bool APInt::slt(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
if (isSingleWord()) {
@ -554,15 +534,20 @@ bool APInt::slt(const APInt& RHS) const {
bool lhsNegative = false;
bool rhsNegative = false;
if (lhs[BitWidth-1]) {
// Sign bit is set so make a note of it and perform two's complement
lhsNegative = true;
lhs.flip();
lhs++;
}
if (rhs[BitWidth-1]) {
// Sign bit is set so make a note of it and perform two's complement
rhsNegative = true;
rhs.flip();
rhs++;
}
// Now we have unsigned values to compare so do the comparison if necessary
// based on the negativeness of the values.
if (lhsNegative)
if (rhsNegative)
return !lhs.ult(rhs);
@ -574,25 +559,25 @@ bool APInt::slt(const APInt& RHS) const {
return lhs.ult(rhs);
}
/// Set the given bit to 1 whose poition is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& APInt::set(uint32_t bitPosition) {
if (isSingleWord()) VAL |= maskBit(bitPosition);
else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
if (isSingleWord())
VAL |= maskBit(bitPosition);
else
pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 1.
APInt& APInt::set() {
if (isSingleWord())
VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
else {
for (uint32_t i = 0; i < getNumWords() - 1; ++i)
pVal[i] = -1ULL;
pVal[getNumWords() - 1] = ~0ULL >>
(APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
if (isSingleWord()) {
VAL = -1ULL;
return clearUnusedBits();
}
return *this;
// Set all the bits in all the words.
for (uint32_t i = 0; i < getNumWords() - 1; ++i)
pVal[i] = -1ULL;
// Clear the unused ones
return clearUnusedBits();
}
/// Set the given bit to 0 whose position is given as "bitPosition".
@ -695,11 +680,6 @@ bool APInt::isPowerOf2() const {
return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
}
/// countLeadingZeros - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the most significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
uint32_t APInt::countLeadingZeros() const {
uint32_t Count = 0;
if (isSingleWord())
@ -720,11 +700,6 @@ uint32_t APInt::countLeadingZeros() const {
return Count;
}
/// countTrailingZeros - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the least significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
uint32_t APInt::countTrailingZeros() const {
if (isSingleWord())
return CountTrailingZeros_64(VAL);
@ -732,10 +707,6 @@ uint32_t APInt::countTrailingZeros() const {
return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
}
/// countPopulation - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countPopulation_{32, 64}. It counts the number of set bits in a value.
/// @returns 0 if the value is zero.
uint32_t APInt::countPopulation() const {
if (isSingleWord())
return CountPopulation_64(VAL);
@ -745,9 +716,6 @@ uint32_t APInt::countPopulation() const {
return Count;
}
/// byteSwap - This function returns a byte-swapped representation of the
/// this APInt.
APInt APInt::byteSwap() const {
assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
if (BitWidth == 16)
@ -776,8 +744,6 @@ APInt APInt::byteSwap() const {
}
}
/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
const APInt& API2) {
APInt A = API1, B = API2;
@ -789,8 +755,6 @@ APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
return A;
}
/// DoubleRoundToAPInt - This function convert a double value to
/// a APInt value.
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
union {
double D;
@ -879,16 +843,19 @@ double APInt::roundToDouble(bool isSigned) const {
// Truncate to new width.
void APInt::trunc(uint32_t width) {
assert(width < BitWidth && "Invalid APInt Truncate request");
// FIXME: implement
}
// Sign extend to a new width.
void APInt::sext(uint32_t width) {
assert(width > BitWidth && "Invalid APInt SignExtend request");
// FIXME: implement
}
// Zero extend to a new width.
void APInt::zext(uint32_t width) {
assert(width > BitWidth && "Invalid APInt ZeroExtend request");
// FIXME: implement
}
/// Arithmetic right-shift this APInt by shiftAmt.
@ -896,33 +863,32 @@ void APInt::zext(uint32_t width) {
APInt APInt::ashr(uint32_t shiftAmt) const {
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, -1ull);
return APInt(BitWidth, -1ULL);
else
return APInt(BitWidth,
(((int64_t(VAL) << (APINT_BITS_PER_WORD - BitWidth)) >>
(APINT_BITS_PER_WORD - BitWidth)) >> shiftAmt) &
(~uint64_t(0UL) >> (APINT_BITS_PER_WORD - BitWidth)));
(APINT_BITS_PER_WORD - BitWidth)) >> shiftAmt)).clearUnusedBits();
}
APInt Result(*this);
if (shiftAmt >= BitWidth) {
memset(Result.pVal, Result[BitWidth-1] ? 1 : 0,
(getNumWords()-1) * APINT_WORD_SIZE);
Result.pVal[getNumWords() - 1] = ~uint64_t(0UL) >>
(APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
} else {
uint32_t i = 0;
for (; i < BitWidth - shiftAmt; ++i)
if (Result[i+shiftAmt])
Result.set(i);
else
Result.clear(i);
for (; i < BitWidth; ++i)
if (Result[BitWidth-1])
Result.set(i);
else
Result.clear(i);
return Result.clearUnusedBits();
}
// FIXME: bit-at-a-time shift is really slow.
uint32_t i = 0;
for (; i < BitWidth - shiftAmt; ++i)
if (Result[i+shiftAmt])
Result.set(i);
else
Result.clear(i);
for (; i < BitWidth; ++i)
if (Result[BitWidth-1])
Result.set(i);
else
Result.clear(i);
return Result;
}
@ -936,8 +902,12 @@ APInt APInt::lshr(uint32_t shiftAmt) const {
return APInt(BitWidth, this->VAL >> shiftAmt);
APInt Result(*this);
if (shiftAmt >= Result.BitWidth)
memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
if (shiftAmt >= BitWidth) {
Result.clear();
return Result;
}
// FIXME: bit at a time shift is really slow
uint32_t i = 0;
for (i = 0; i < Result.BitWidth - shiftAmt; ++i)
if (Result[i+shiftAmt])
@ -956,9 +926,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0); // avoid undefined shift results
return APInt(BitWidth, (VAL << shiftAmt) &
(~uint64_t(0ULL) >>
(APINT_BITS_PER_WORD - BitWidth)));
return APInt(BitWidth, VAL << shiftAmt).clearUnusedBits();
}
// If all the bits were shifted out, the result is 0. This avoids issues
@ -978,8 +946,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
val[i] = pVal[i] << shiftAmt | carry;
carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
}
val[getNumWords()-1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
return APInt(val, BitWidth);
return APInt(val, BitWidth).clearUnusedBits();
}
// Compute some values needed by the remaining shift algorithms
@ -992,8 +959,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
val[i] = 0;
for (uint32_t i = offset; i < getNumWords(); i++)
val[i] = pVal[i-offset];
val[getNumWords()-1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
return APInt(val,BitWidth);
return APInt(val,BitWidth).clearUnusedBits();
}
// Copy whole words from this to Result.
@ -1004,8 +970,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
val[offset] = pVal[0] << wordShift;
for (i = 0; i < offset; ++i)
val[i] = 0;
val[getNumWords()-1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
return APInt(val, BitWidth);
return APInt(val, BitWidth).clearUnusedBits();
}
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
@ -1185,9 +1150,6 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
DEBUG(cerr << std::setbase(10) << '\n');
}
// This function makes calling KnuthDiv a little more convenient. It uses
// APInt parameters instead of uint32_t* parameters. It can also divide APInt
// values of different widths.
void APInt::divide(const APInt LHS, uint32_t lhsWords,
const APInt &RHS, uint32_t rhsWords,
APInt *Quotient, APInt *Remainder)
@ -1364,8 +1326,6 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
}
}
/// Unsigned divide this APInt by APInt RHS.
/// @brief Unsigned division function for APInt.
APInt APInt::udiv(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
@ -1403,8 +1363,6 @@ APInt APInt::udiv(const APInt& RHS) const {
return Quotient;
}
/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
APInt APInt::urem(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
@ -1442,7 +1400,6 @@ APInt APInt::urem(const APInt& RHS) const {
return Remainder;
}
/// @brief Converts a char array into an integer.
void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
uint8_t radix) {
// Check our assumptions here
@ -1498,7 +1455,6 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
}
}
/// to_string - This function translates the APInt into a string.
std::string APInt::toString(uint8_t radix, bool wantSigned) const {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");