[X86, AVX] instcombine vperm2 intrinsics with zero inputs into shuffles

This is the IR optimizer follow-on patch for D8563: the x86 backend patch
that converts this kind of shuffle back into a vperm2.

This is also a continuation of the transform that started in D8486. 
In that patch, Andrea suggested that we could convert vperm2 intrinsics that
use zero masks into a single shuffle. 

This is an implementation of that suggestion.

Differential Revision: http://reviews.llvm.org/D8567



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233110 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2015-03-24 20:36:42 +00:00
parent 71be19dff2
commit 5e0ce9d13a
2 changed files with 70 additions and 41 deletions

View File

@ -204,7 +204,7 @@ static Value *SimplifyX86vperm2(const IntrinsicInst &II,
InstCombiner::BuilderTy &Builder) {
if (auto CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
VectorType *VecTy = cast<VectorType>(II.getType());
uint8_t Imm = CInt->getZExtValue();
ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
// The immediate permute control byte looks like this:
// [1:0] - select 128 bits from sources for low half of destination
@ -213,37 +213,51 @@ static Value *SimplifyX86vperm2(const IntrinsicInst &II,
// [5:4] - select 128 bits from sources for high half of destination
// [6] - ignore
// [7] - zero high half of destination
uint8_t Imm = CInt->getZExtValue();
bool LowHalfZero = Imm & 0x08;
bool HighHalfZero = Imm & 0x80;
// If both zero mask bits are set, this was just a weird way to
// generate a zero vector.
if (LowHalfZero && HighHalfZero)
return ZeroVector;
// If 0 or 1 zero mask bits are set, this is a simple shuffle.
unsigned NumElts = VecTy->getNumElements();
unsigned HalfSize = NumElts / 2;
SmallVector<int, 8> ShuffleMask(NumElts);
// The high bit of the selection field chooses the 1st or 2nd operand.
bool LowInputSelect = Imm & 0x02;
bool HighInputSelect = Imm & 0x20;
if ((Imm & 0x88) == 0x88) {
// If both zero mask bits are set, this was just a weird way to
// generate a zero vector.
return ConstantAggregateZero::get(VecTy);
}
// The low bit of the selection field chooses the low or high half
// of the selected operand.
bool LowHalfSelect = Imm & 0x01;
bool HighHalfSelect = Imm & 0x10;
// TODO: If a single zero bit is set, replace one of the source operands
// with a zero vector and use the same mask generation logic as below.
if ((Imm & 0x88) == 0x00) {
// If neither zero mask bit is set, this is a simple shuffle.
unsigned NumElts = VecTy->getNumElements();
unsigned HalfSize = NumElts / 2;
unsigned HalfBegin;
SmallVector<int, 8> ShuffleMask(NumElts);
// Permute low half of result.
HalfBegin = (Imm & 0x3) * HalfSize;
for (unsigned i = 0; i != HalfSize; ++i)
ShuffleMask[i] = HalfBegin + i;
// Determine which operand(s) are actually in use for this instruction.
Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
// Permute high half of result.
HalfBegin = ((Imm >> 4) & 0x3) * HalfSize;
for (unsigned i = HalfSize; i != NumElts; ++i)
ShuffleMask[i] = HalfBegin + i - HalfSize;
// If needed, replace operands based on zero mask.
V0 = LowHalfZero ? ZeroVector : V0;
V1 = HighHalfZero ? ZeroVector : V1;
// Permute low half of result.
unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
for (unsigned i = 0; i < HalfSize; ++i)
ShuffleMask[i] = StartIndex + i;
Value *Op0 = II.getArgOperand(0);
Value *Op1 = II.getArgOperand(1);
return Builder.CreateShuffleVector(Op0, Op1, ShuffleMask);
}
// Permute high half of result.
StartIndex = HighHalfSelect ? HalfSize : 0;
StartIndex += NumElts;
for (unsigned i = 0; i < HalfSize; ++i)
ShuffleMask[i + HalfSize] = StartIndex + i;
return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
}
return nullptr;
}

View File

@ -76,7 +76,7 @@ define <4 x double> @perm2pd_0x02(<4 x double> %a0, <4 x double> %a1) {
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x02
; CHECK-NEXT: %1 = shufflevector <4 x double> %a0, <4 x double> %a1, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
; CHECK-NEXT: %1 = shufflevector <4 x double> %a1, <4 x double> %a0, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
; CHECK-NEXT: ret <4 x double> %1
}
@ -85,7 +85,7 @@ define <4 x double> @perm2pd_0x03(<4 x double> %a0, <4 x double> %a1) {
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x03
; CHECK-NEXT: %1 = shufflevector <4 x double> %a0, <4 x double> %a1, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
; CHECK-NEXT: %1 = shufflevector <4 x double> %a1, <4 x double> %a0, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
; CHECK-NEXT: ret <4 x double> %1
}
@ -111,7 +111,7 @@ define <4 x double> @perm2pd_0x12(<4 x double> %a0, <4 x double> %a1) {
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x12
; CHECK-NEXT: %1 = shufflevector <4 x double> %a0, <4 x double> %a1, <4 x i32> <i32 4, i32 5, i32 2, i32 3>
; CHECK-NEXT: %1 = shufflevector <4 x double> %a1, <4 x double> %a0, <4 x i32> <i32 0, i32 1, i32 6, i32 7>
; CHECK-NEXT: ret <4 x double> %1
}
@ -120,7 +120,7 @@ define <4 x double> @perm2pd_0x13(<4 x double> %a0, <4 x double> %a1) {
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x13
; CHECK-NEXT: %1 = shufflevector <4 x double> %a0, <4 x double> %a1, <4 x i32> <i32 6, i32 7, i32 2, i32 3>
; CHECK-NEXT: %1 = shufflevector <4 x double> %a1, <4 x double> %a0, <4 x i32> <i32 2, i32 3, i32 6, i32 7>
; CHECK-NEXT: ret <4 x double> %1
}
@ -207,26 +207,41 @@ define <8 x float> @perm2ps_0x31(<8 x float> %a0, <8 x float> %a1) {
}
; Confirm that when a single zero mask bit is set, we do nothing.
; Confirm that when a single zero mask bit is set, we replace a source vector with zeros.
define <4 x double> @perm2pd_0x81(<4 x double> %a0, <4 x double> %a1) {
%res = call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 129)
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x81
; CHECK-NEXT: shufflevector <4 x double> %a0, <4 x double> <double 0.0{{.*}}<4 x i32> <i32 2, i32 3, i32 4, i32 5>
; CHECK-NEXT: ret <4 x double>
}
define <4 x double> @perm2pd_0x83(<4 x double> %a0, <4 x double> %a1) {
%res = call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 131)
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x83
; CHECK-NEXT: call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 -125)
; CHECK-NEXT: shufflevector <4 x double> %a1, <4 x double> <double 0.0{{.*}}, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
; CHECK-NEXT: ret <4 x double>
}
; Confirm that when the other zero mask bit is set, we do nothing. Also confirm that an ignored bit has no effect.
define <4 x double> @perm2pd_0x48(<4 x double> %a0, <4 x double> %a1) {
%res = call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 72)
define <4 x double> @perm2pd_0x28(<4 x double> %a0, <4 x double> %a1) {
%res = call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 40)
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x48
; CHECK-NEXT: call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 72)
; CHECK-LABEL: @perm2pd_0x28
; CHECK-NEXT: shufflevector <4 x double> <double 0.0{{.*}}, <4 x double> %a1, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
; CHECK-NEXT: ret <4 x double>
}
define <4 x double> @perm2pd_0x08(<4 x double> %a0, <4 x double> %a1) {
%res = call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 8)
ret <4 x double> %res
; CHECK-LABEL: @perm2pd_0x08
; CHECK-NEXT: shufflevector <4 x double> <double 0.0{{.*}}, <4 x double> %a0, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
; CHECK-NEXT: ret <4 x double>
}