mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-15 23:31:37 +00:00
X86 cost model: Adjust cost for custom lowered vector multiplies
This matters for example in following matrix multiply: int **mmult(int rows, int cols, int **m1, int **m2, int **m3) { int i, j, k, val; for (i=0; i<rows; i++) { for (j=0; j<cols; j++) { val = 0; for (k=0; k<cols; k++) { val += m1[i][k] * m2[k][j]; } m3[i][j] = val; } } return(m3); } Taken from the test-suite benchmark Shootout. We estimate the cost of the multiply to be 2 while we generate 9 instructions for it and end up being quite a bit slower than the scalar version (48% on my machine). Also, properly differentiate between avx1 and avx2. On avx-1 we still split the vector into 2 128bits and handle the subvector muls like above with 9 instructions. Only on avx-2 will we have a cost of 9 for v4i64. I changed the test case in test/Transforms/LoopVectorize/X86/avx1.ll to use an add instead of a mul because with a mul we now no longer vectorize. I did verify that the mul would be indeed more expensive when vectorized with 3 kernels: for (i ...) r += a[i] * 3; for (i ...) m1[i] = m1[i] * 3; // This matches the test case in avx1.ll and a matrix multiply. In each case the vectorized version was considerably slower. radar://13304919 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176403 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
1c01af8f26
commit
5f0d9dbdf4
@ -176,18 +176,42 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
|
||||
{ ISD::MUL, MVT::v8i32, 4 },
|
||||
{ ISD::SUB, MVT::v8i32, 4 },
|
||||
{ ISD::ADD, MVT::v8i32, 4 },
|
||||
{ ISD::MUL, MVT::v4i64, 4 },
|
||||
{ ISD::SUB, MVT::v4i64, 4 },
|
||||
{ ISD::ADD, MVT::v4i64, 4 },
|
||||
};
|
||||
// A v4i64 multiply is custom lowered as two split v2i64 vectors that then
|
||||
// are lowered as a series of long multiplies(3), shifts(4) and adds(2)
|
||||
// Because we believe v4i64 to be a legal type, we must also include the
|
||||
// split factor of two in the cost table. Therefore, the cost here is 18
|
||||
// instead of 9.
|
||||
{ ISD::MUL, MVT::v4i64, 18 },
|
||||
};
|
||||
|
||||
// Look for AVX1 lowering tricks.
|
||||
if (ST->hasAVX()) {
|
||||
int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
|
||||
LT.second);
|
||||
if (ST->hasAVX() && !ST->hasAVX2()) {
|
||||
int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable),
|
||||
ISD, LT.second);
|
||||
if (Idx != -1)
|
||||
return LT.first * AVX1CostTable[Idx].Cost;
|
||||
}
|
||||
|
||||
// Custom lowering of vectors.
|
||||
static const CostTblEntry<MVT> CustomLowered[] = {
|
||||
// A v2i64/v4i64 and multiply is custom lowered as a series of long
|
||||
// multiplies(3), shifts(4) and adds(2).
|
||||
{ ISD::MUL, MVT::v2i64, 9 },
|
||||
{ ISD::MUL, MVT::v4i64, 9 },
|
||||
};
|
||||
int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered),
|
||||
ISD, LT.second);
|
||||
if (Idx != -1)
|
||||
return LT.first * CustomLowered[Idx].Cost;
|
||||
|
||||
// Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
|
||||
// 2x pmuludq, 2x shuffle.
|
||||
if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
|
||||
!ST->hasSSE41())
|
||||
return 6;
|
||||
|
||||
// Fallback to the default implementation.
|
||||
return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
|
||||
}
|
||||
|
@ -1,4 +1,6 @@
|
||||
; RUN: opt < %s -cost-model -analyze -mtriple=x86_64-apple-macosx10.8.0 -mcpu=corei7-avx | FileCheck %s
|
||||
; RUN: opt < %s -cost-model -analyze -mtriple=x86_64-apple-macosx10.8.0 -mcpu=core2 | FileCheck %s --check-prefix=SSE3
|
||||
; RUN: opt < %s -cost-model -analyze -mtriple=x86_64-apple-macosx10.8.0 -mcpu=core-avx2 | FileCheck %s --check-prefix=AVX2
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-apple-macosx10.8.0"
|
||||
@ -32,7 +34,37 @@ define i32 @xor(i32 %arg) {
|
||||
ret i32 undef
|
||||
}
|
||||
|
||||
; CHECK: mul
|
||||
define void @mul() {
|
||||
; A <2 x i32> gets expanded to a <2 x i64> vector.
|
||||
; A <2 x i64> vector multiply is implemented using
|
||||
; 3 PMULUDQ and 2 PADDS and 4 shifts.
|
||||
;CHECK: cost of 9 {{.*}} mul
|
||||
%A0 = mul <2 x i32> undef, undef
|
||||
;CHECK: cost of 9 {{.*}} mul
|
||||
%A1 = mul <2 x i64> undef, undef
|
||||
;CHECK: cost of 18 {{.*}} mul
|
||||
%A2 = mul <4 x i64> undef, undef
|
||||
ret void
|
||||
}
|
||||
|
||||
; SSE3: sse3mull
|
||||
define void @sse3mull() {
|
||||
; SSE3: cost of 6 {{.*}} mul
|
||||
%A0 = mul <4 x i32> undef, undef
|
||||
ret void
|
||||
; SSE3: avx2mull
|
||||
}
|
||||
|
||||
; AVX2: avx2mull
|
||||
define void @avx2mull() {
|
||||
; AVX2: cost of 9 {{.*}} mul
|
||||
%A0 = mul <4 x i64> undef, undef
|
||||
ret void
|
||||
; AVX2: fmul
|
||||
}
|
||||
|
||||
; CHECK: fmul
|
||||
define i32 @fmul(i32 %arg) {
|
||||
;CHECK: cost of 1 {{.*}} fmul
|
||||
%A = fmul <4 x float> undef, undef
|
||||
|
@ -27,7 +27,7 @@ define i32 @read_mod_write_single_ptr(float* nocapture %a, i32 %n) nounwind uwta
|
||||
|
||||
|
||||
;CHECK: @read_mod_i64
|
||||
;CHECK: load <4 x i64>
|
||||
;CHECK: load <2 x i64>
|
||||
;CHECK: ret i32
|
||||
define i32 @read_mod_i64(i64* nocapture %a, i32 %n) nounwind uwtable ssp {
|
||||
%1 = icmp sgt i32 %n, 0
|
||||
@ -37,7 +37,7 @@ define i32 @read_mod_i64(i64* nocapture %a, i32 %n) nounwind uwtable ssp {
|
||||
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %0 ]
|
||||
%2 = getelementptr inbounds i64* %a, i64 %indvars.iv
|
||||
%3 = load i64* %2, align 4
|
||||
%4 = mul i64 %3, 3
|
||||
%4 = add i64 %3, 3
|
||||
store i64 %4, i64* %2, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
|
Loading…
x
Reference in New Issue
Block a user