Implement support for a new LLVM 1.3 bytecode format, which uses uint's

to index into structure types and allows arbitrary 32- and 64-bit integer
types to index into sequential types.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12651 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-04-05 01:27:26 +00:00
parent 68056127bb
commit 5fa428fda9
6 changed files with 191 additions and 87 deletions

View File

@ -15,6 +15,7 @@
#include "ReaderInternals.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include <algorithm>
using namespace llvm;
@ -164,6 +165,20 @@ Constant *BytecodeParser::parseConstantValue(const unsigned char *&Buf,
return ConstantExpr::getCast(ArgVec[0], getType(TypeID));
} else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
if (hasRestrictedGEPTypes) {
const Type *BaseTy = ArgVec[0]->getType();
generic_gep_type_iterator<std::vector<Constant*>::iterator>
GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
for (unsigned i = 0; GTI != E; ++GTI, ++i)
if (isa<StructType>(*GTI)) {
if (IdxList[i]->getType() != Type::UByteTy)
throw std::string("Invalid index for getelementptr!");
IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
}
}
return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
} else if (Opcode == Instruction::Select) {
assert(ArgVec.size() == 3);

View File

@ -308,10 +308,35 @@ void BytecodeParser::ParseInstruction(const unsigned char *&Buf,
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
// FIXME: when PR82 is resolved.
unsigned IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID :Type::LongTyID;
Idx.push_back(getValue(IdxTy, Args[i]));
unsigned ValIdx = Args[i];
unsigned IdxTy;
if (!hasRestrictedGEPTypes) {
// Struct indices are always uints, sequential type indices can be any
// of the 32 or 64-bit integer types. The actual choice of type is
// encoded in the low two bits of the slot number.
if (isa<StructType>(TopTy))
IdxTy = Type::UIntTyID;
else {
switch (ValIdx & 3) {
case 0: IdxTy = Type::UIntTyID; break;
case 1: IdxTy = Type::IntTyID; break;
case 2: IdxTy = Type::ULongTyID; break;
case 3: IdxTy = Type::LongTyID; break;
}
ValIdx >>= 2;
}
} else {
IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
}
Idx.push_back(getValue(IdxTy, ValIdx));
// Convert ubyte struct indices into uint struct indices.
if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
}

View File

@ -647,12 +647,10 @@ void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
// Default values for the current bytecode version
hasInconsistentModuleGlobalInfo = false;
hasExplicitPrimitiveZeros = false;
hasRestrictedGEPTypes = false;
switch (RevisionNum) {
case 0: // LLVM 1.0, 1.1 release version
// Compared to rev #2, we added support for weak linkage, a more dense
// encoding, and better varargs support.
// Base LLVM 1.0 bytecode format.
hasInconsistentModuleGlobalInfo = true;
hasExplicitPrimitiveZeros = true;
@ -663,6 +661,13 @@ void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
// Also, it fixed the problem where the size of the ModuleGlobalInfo block
// included the size for the alignment at the end, where the rest of the
// blocks did not.
// LLVM 1.2 and before required that GEP indices be ubyte constants for
// structures and longs for sequential types.
hasRestrictedGEPTypes = true;
// FALL THROUGH
case 2: // LLVM 1.3 release version
break;
default:

View File

@ -108,6 +108,13 @@ private:
// int/sbyte/etc.
bool hasExplicitPrimitiveZeros;
// Flags to control features specific the LLVM 1.2 and before (revision #1)
// LLVM 1.2 and earlier required that getelementptr structure indices were
// ubyte constants and that sequential type indices were longs.
bool hasRestrictedGEPTypes;
typedef std::vector<ValueList*> ValueTable;
ValueTable Values;
ValueTable ModuleValues;

View File

@ -16,6 +16,7 @@
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "Support/Statistic.h"
#include <algorithm>
using namespace llvm;
@ -38,20 +39,48 @@ static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
isa<VAArgInst>(I)), Out);
for (unsigned i = 0; i < NumArgs; ++i) {
int Slot = Table.getSlot(I->getOperand(i));
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr((unsigned)Slot, Out);
}
if (!isa<GetElementPtrInst>(&I)) {
for (unsigned i = 0; i < NumArgs; ++i) {
int Slot = Table.getSlot(I->getOperand(i));
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr((unsigned)Slot, Out);
}
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
int Slot = Table.getSlot(I->getType());
assert(Slot != -1 && "Cast return type unknown?");
output_vbr((unsigned)Slot, Out);
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
int Slot = Table.getSlot(VAI->getArgType());
assert(Slot != -1 && "VarArg argument type unknown?");
output_vbr((unsigned)Slot, Out);
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
int Slot = Table.getSlot(I->getType());
assert(Slot != -1 && "Cast return type unknown?");
output_vbr((unsigned)Slot, Out);
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
int Slot = Table.getSlot(VAI->getArgType());
assert(Slot != -1 && "VarArg argument type unknown?");
output_vbr((unsigned)Slot, Out);
}
} else {
int Slot = Table.getSlot(I->getOperand(0));
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr(unsigned(Slot), Out);
// We need to encode the type of sequential type indices into their slot #
unsigned Idx = 1;
for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
Idx != NumArgs; ++TI, ++Idx) {
Slot = Table.getSlot(I->getOperand(Idx));
assert(Slot >= 0 && "No slot number for value!?!?");
if (isa<SequentialType>(*TI)) {
unsigned IdxId;
switch (I->getOperand(Idx)->getType()->getPrimitiveID()) {
default: assert(0 && "Unknown index type!");
case Type::UIntTyID: IdxId = 0; break;
case Type::IntTyID: IdxId = 1; break;
case Type::ULongTyID: IdxId = 2; break;
case Type::LongTyID: IdxId = 3; break;
}
Slot = (Slot << 2) | IdxId;
}
output_vbr(unsigned(Slot), Out);
}
}
align32(Out); // We must maintain correct alignment!
@ -119,8 +148,9 @@ static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
// operand index is >= 2^12.
//
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
const SlotCalculator &Table, int *Slots,
unsigned Type, std::deque<uchar> &Out) {
const SlotCalculator &Table,
unsigned *Slots, unsigned Type,
std::deque<uchar> &Out) {
// bits Instruction format:
// --------------------------
// 01-00: Opcode type, fixed to 1.
@ -138,8 +168,9 @@ static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
// operand index is >= 2^8.
//
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
const SlotCalculator &Table, int *Slots,
unsigned Type, std::deque<uchar> &Out) {
const SlotCalculator &Table,
unsigned *Slots, unsigned Type,
std::deque<uchar> &Out) {
// bits Instruction format:
// --------------------------
// 01-00: Opcode type, fixed to 2.
@ -160,8 +191,9 @@ static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
// operand index is >= 2^6.
//
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
const SlotCalculator &Table, int *Slots,
unsigned Type, std::deque<uchar> &Out) {
const SlotCalculator &Table,
unsigned *Slots, unsigned Type,
std::deque<uchar> &Out) {
// bits Instruction format:
// --------------------------
// 01-00: Opcode type, fixed to 3.
@ -181,6 +213,7 @@ static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
void BytecodeWriter::outputInstruction(const Instruction &I) {
assert(I.getOpcode() < 62 && "Opcode too big???");
unsigned Opcode = I.getOpcode();
unsigned NumOperands = I.getNumOperands();
// Encode 'volatile load' as 62 and 'volatile store' as 63.
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
@ -188,17 +221,6 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
Opcode = 63;
unsigned NumOperands = I.getNumOperands();
int MaxOpSlot = 0;
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
for (unsigned i = 0; i != NumOperands; ++i) {
int slot = Table.getSlot(I.getOperand(i));
assert(slot != -1 && "Broken bytecode!");
if (slot > MaxOpSlot) MaxOpSlot = slot;
if (i < 3) Slots[i] = slot;
}
// Figure out which type to encode with the instruction. Typically we want
// the type of the first parameter, as opposed to the type of the instruction
// (for example, with setcc, we always know it returns bool, but the type of
@ -226,71 +248,101 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
assert(Slot != -1 && "Type not available!!?!");
Type = (unsigned)Slot;
// Make sure that we take the type number into consideration. We don't want
// to overflow the field size for the instruction format we select.
//
if (Slot > MaxOpSlot) MaxOpSlot = Slot;
// Handle the special case for cast...
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
// Cast has to encode the destination type as the second argument in the
// packet, or else we won't know what type to cast to!
Slots[1] = Table.getSlot(I.getType());
assert(Slots[1] != -1 && "Cast return type unknown?");
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
NumOperands++;
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
Slots[1] = Table.getSlot(VANI->getArgType());
assert(Slots[1] != -1 && "va_next return type unknown?");
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
NumOperands++;
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
// Varargs calls and invokes are encoded entirely different from any other
// instructions.
if (const CallInst *CI = dyn_cast<CallInst>(&I)){
const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
return;
}
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes
const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
return;
}
}
// Decide which instruction encoding to use. This is determined primarily by
// the number of operands, and secondarily by whether or not the max operand
// will fit into the instruction encoding. More operands == fewer bits per
// operand.
//
switch (NumOperands) {
case 0:
case 1:
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
return;
if (NumOperands <= 3) {
// Make sure that we take the type number into consideration. We don't want
// to overflow the field size for the instruction format we select.
//
unsigned MaxOpSlot = Type;
unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
for (unsigned i = 0; i != NumOperands; ++i) {
int slot = Table.getSlot(I.getOperand(i));
assert(slot != -1 && "Broken bytecode!");
if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
Slots[i] = unsigned(slot);
}
break;
case 2:
if (MaxOpSlot < (1 << 8)) {
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
return;
// Handle the special cases for various instructions...
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
// Cast has to encode the destination type as the second argument in the
// packet, or else we won't know what type to cast to!
Slots[1] = Table.getSlot(I.getType());
assert(Slots[1] != ~0U && "Cast return type unknown?");
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
NumOperands++;
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
Slots[1] = Table.getSlot(VANI->getArgType());
assert(Slots[1] != ~0U && "va_next return type unknown?");
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
NumOperands++;
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
// We need to encode the type of sequential type indices into their slot #
unsigned Idx = 1;
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
I != E; ++I, ++Idx)
if (isa<SequentialType>(*I)) {
unsigned IdxId;
switch (GEP->getOperand(Idx)->getType()->getPrimitiveID()) {
default: assert(0 && "Unknown index type!");
case Type::UIntTyID: IdxId = 0; break;
case Type::IntTyID: IdxId = 1; break;
case Type::ULongTyID: IdxId = 2; break;
case Type::LongTyID: IdxId = 3; break;
}
Slots[Idx] = (Slots[Idx] << 2) | IdxId;
if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
}
}
break;
case 3:
if (MaxOpSlot < (1 << 6)) {
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
return;
// Decide which instruction encoding to use. This is determined primarily
// by the number of operands, and secondarily by whether or not the max
// operand will fit into the instruction encoding. More operands == fewer
// bits per operand.
//
switch (NumOperands) {
case 0:
case 1:
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
return;
}
break;
case 2:
if (MaxOpSlot < (1 << 8)) {
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
return;
}
break;
case 3:
if (MaxOpSlot < (1 << 6)) {
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
return;
}
break;
default:
break;
}
break;
default:
break;
}
// If we weren't handled before here, we either have a large number of
// operands or a large operand index that we are referring to.
outputInstructionFormat0(&I, Opcode, Table, Type, Out);
}

View File

@ -54,9 +54,9 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
// Output the version identifier... we are currently on bytecode version #1,
// which corresponds to LLVM v1.2.
unsigned Version = (1 << 4) | isBigEndian | (hasLongPointers << 1) |
// Output the version identifier... we are currently on bytecode version #2,
// which corresponds to LLVM v1.3.
unsigned Version = (2 << 4) | isBigEndian | (hasLongPointers << 1) |
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
output_vbr(Version, Out);
align32(Out);