mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-09-26 09:18:56 +00:00
Implement support for a new LLVM 1.3 bytecode format, which uses uint's
to index into structure types and allows arbitrary 32- and 64-bit integer types to index into sequential types. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12651 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -16,6 +16,7 @@
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
@@ -38,20 +39,48 @@ static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
||||
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
|
||||
isa<VAArgInst>(I)), Out);
|
||||
|
||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
if (!isa<GetElementPtrInst>(&I)) {
|
||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Cast return type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||
int Slot = Table.getSlot(VAI->getArgType());
|
||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Cast return type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||
int Slot = Table.getSlot(VAI->getArgType());
|
||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
} else {
|
||||
int Slot = Table.getSlot(I->getOperand(0));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr(unsigned(Slot), Out);
|
||||
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
|
||||
Idx != NumArgs; ++TI, ++Idx) {
|
||||
Slot = Table.getSlot(I->getOperand(Idx));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
|
||||
if (isa<SequentialType>(*TI)) {
|
||||
unsigned IdxId;
|
||||
switch (I->getOperand(Idx)->getType()->getPrimitiveID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slot = (Slot << 2) | IdxId;
|
||||
}
|
||||
output_vbr(unsigned(Slot), Out);
|
||||
}
|
||||
}
|
||||
|
||||
align32(Out); // We must maintain correct alignment!
|
||||
@@ -119,8 +148,9 @@ static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
|
||||
// operand index is >= 2^12.
|
||||
//
|
||||
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, int *Slots,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 1.
|
||||
@@ -138,8 +168,9 @@ static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
||||
// operand index is >= 2^8.
|
||||
//
|
||||
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, int *Slots,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 2.
|
||||
@@ -160,8 +191,9 @@ static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
||||
// operand index is >= 2^6.
|
||||
//
|
||||
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, int *Slots,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 3.
|
||||
@@ -181,6 +213,7 @@ static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
||||
void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
assert(I.getOpcode() < 62 && "Opcode too big???");
|
||||
unsigned Opcode = I.getOpcode();
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
|
||||
// Encode 'volatile load' as 62 and 'volatile store' as 63.
|
||||
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
|
||||
@@ -188,17 +221,6 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
|
||||
Opcode = 63;
|
||||
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
int MaxOpSlot = 0;
|
||||
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||
int slot = Table.getSlot(I.getOperand(i));
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (slot > MaxOpSlot) MaxOpSlot = slot;
|
||||
if (i < 3) Slots[i] = slot;
|
||||
}
|
||||
|
||||
// Figure out which type to encode with the instruction. Typically we want
|
||||
// the type of the first parameter, as opposed to the type of the instruction
|
||||
// (for example, with setcc, we always know it returns bool, but the type of
|
||||
@@ -226,71 +248,101 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
assert(Slot != -1 && "Type not available!!?!");
|
||||
Type = (unsigned)Slot;
|
||||
|
||||
// Make sure that we take the type number into consideration. We don't want
|
||||
// to overflow the field size for the instruction format we select.
|
||||
//
|
||||
if (Slot > MaxOpSlot) MaxOpSlot = Slot;
|
||||
|
||||
// Handle the special case for cast...
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getSlot(I.getType());
|
||||
assert(Slots[1] != -1 && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||
assert(Slots[1] != -1 && "va_next return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
|
||||
const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
|
||||
// Varargs calls and invokes are encoded entirely different from any other
|
||||
// instructions.
|
||||
if (const CallInst *CI = dyn_cast<CallInst>(&I)){
|
||||
const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes
|
||||
const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
||||
const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Decide which instruction encoding to use. This is determined primarily by
|
||||
// the number of operands, and secondarily by whether or not the max operand
|
||||
// will fit into the instruction encoding. More operands == fewer bits per
|
||||
// operand.
|
||||
//
|
||||
switch (NumOperands) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
if (NumOperands <= 3) {
|
||||
// Make sure that we take the type number into consideration. We don't want
|
||||
// to overflow the field size for the instruction format we select.
|
||||
//
|
||||
unsigned MaxOpSlot = Type;
|
||||
unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||
int slot = Table.getSlot(I.getOperand(i));
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
|
||||
Slots[i] = unsigned(slot);
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
// Handle the special cases for various instructions...
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getSlot(I.getType());
|
||||
assert(Slots[1] != ~0U && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||
assert(Slots[1] != ~0U && "va_next return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
|
||||
I != E; ++I, ++Idx)
|
||||
if (isa<SequentialType>(*I)) {
|
||||
unsigned IdxId;
|
||||
switch (GEP->getOperand(Idx)->getType()->getPrimitiveID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slots[Idx] = (Slots[Idx] << 2) | IdxId;
|
||||
if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
// Decide which instruction encoding to use. This is determined primarily
|
||||
// by the number of operands, and secondarily by whether or not the max
|
||||
// operand will fit into the instruction encoding. More operands == fewer
|
||||
// bits per operand.
|
||||
//
|
||||
switch (NumOperands) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// If we weren't handled before here, we either have a large number of
|
||||
// operands or a large operand index that we are referring to.
|
||||
outputInstructionFormat0(&I, Opcode, Table, Type, Out);
|
||||
}
|
||||
|
||||
|
@@ -54,9 +54,9 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
|
||||
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
|
||||
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
|
||||
|
||||
// Output the version identifier... we are currently on bytecode version #1,
|
||||
// which corresponds to LLVM v1.2.
|
||||
unsigned Version = (1 << 4) | isBigEndian | (hasLongPointers << 1) |
|
||||
// Output the version identifier... we are currently on bytecode version #2,
|
||||
// which corresponds to LLVM v1.3.
|
||||
unsigned Version = (2 << 4) | isBigEndian | (hasLongPointers << 1) |
|
||||
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
|
||||
output_vbr(Version, Out);
|
||||
align32(Out);
|
||||
|
Reference in New Issue
Block a user