* ConstExpr::getelementptr now takes a vector of Constants not Values

* Assert things instead of printing an error and returning null.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2949 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-07-18 00:14:50 +00:00
parent cc4b6ec2b9
commit 6183b92b2c

View File

@ -18,8 +18,6 @@ using std::map;
using std::pair;
using std::make_pair;
using std::vector;
using std::cerr;
using std::endl;
ConstantBool *ConstantBool::True = new ConstantBool(true);
ConstantBool *ConstantBool::False = new ConstantBool(false);
@ -71,13 +69,10 @@ void Constant::destroyConstantImpl() {
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
std::cerr << "While deleting: ";
dump();
std::cerr << "\nUse still stuck around after Def is destroyed: ";
V->dump();
std::cerr << "\n";
}
if (!isa<Constant>(V))
std::cerr << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
Constant *CPV = cast<Constant>(V);
@ -156,7 +151,7 @@ ConstantExpr::ConstantExpr(unsigned opCode, Constant* C1,
}
ConstantExpr::ConstantExpr(unsigned opCode, Constant* C,
const std::vector<Value*>& IdxList, const Type *Ty)
const std::vector<Constant*> &IdxList, const Type *Ty)
: Constant(Ty), iType(opCode) {
Operands.reserve(1+IdxList.size());
Operands.push_back(Use(C, this));
@ -170,27 +165,27 @@ ConstantExpr::ConstantExpr(unsigned opCode, Constant* C,
// classof implementations
bool ConstantInt::classof(const Constant *CPV) {
return CPV->getType()->isIntegral() && ! isa<ConstantExpr>(CPV);
return CPV->getType()->isIntegral() && !isa<ConstantExpr>(CPV);
}
bool ConstantSInt::classof(const Constant *CPV) {
return CPV->getType()->isSigned() && ! isa<ConstantExpr>(CPV);
return CPV->getType()->isSigned() && !isa<ConstantExpr>(CPV);
}
bool ConstantUInt::classof(const Constant *CPV) {
return CPV->getType()->isUnsigned() && ! isa<ConstantExpr>(CPV);
return CPV->getType()->isUnsigned() && !isa<ConstantExpr>(CPV);
}
bool ConstantFP::classof(const Constant *CPV) {
const Type *Ty = CPV->getType();
return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) &&
! isa<ConstantExpr>(CPV));
!isa<ConstantExpr>(CPV));
}
bool ConstantArray::classof(const Constant *CPV) {
return isa<ArrayType>(CPV->getType()) && ! isa<ConstantExpr>(CPV);
return isa<ArrayType>(CPV->getType()) && !isa<ConstantExpr>(CPV);
}
bool ConstantStruct::classof(const Constant *CPV) {
return isa<StructType>(CPV->getType()) && ! isa<ConstantExpr>(CPV);
return isa<StructType>(CPV->getType()) && !isa<ConstantExpr>(CPV);
}
bool ConstantPointer::classof(const Constant *CPV) {
return (isa<PointerType>(CPV->getType()) && ! isa<ConstantExpr>(CPV));
return (isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV));
}
@ -396,114 +391,86 @@ ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) {
typedef pair<unsigned, vector<Constant*> > ExprMapKeyType;
static ValueMap<const ExprMapKeyType, ConstantExpr> ExprConstants;
ConstantExpr*
ConstantExpr::get(unsigned opCode, Constant *C, const Type *Ty) {
ConstantExpr *ConstantExpr::get(unsigned Opcode, Constant *C, const Type *Ty) {
// Look up the constant in the table first to ensure uniqueness
vector<Constant*> argVec(1, C);
const ExprMapKeyType& key = make_pair(opCode, argVec);
ConstantExpr* result = ExprConstants.get(Ty, key);
if (result)
return result;
const ExprMapKeyType &Key = make_pair(Opcode, argVec);
ConstantExpr *Result = ExprConstants.get(Ty, Key);
if (Result) return Result;
// Its not in the table so create a new one and put it in the table.
// Check the operands for consistency first
if (opCode != Instruction::Cast &&
(opCode < Instruction::FirstUnaryOp ||
opCode >= Instruction::NumUnaryOps)) {
std::cerr << "Invalid opcode " << ConstantExpr::getOpcodeName(opCode)
<< " in unary constant expression" << std::endl;
return NULL; // Not Cast or other unary opcode
}
assert(Opcode == Instruction::Cast ||
(Opcode >= Instruction::FirstUnaryOp &&
Opcode < Instruction::NumUnaryOps) &&
"Invalid opcode in unary ConstantExpr!");
// type of operand will not match result for Cast operation
if (opCode != Instruction::Cast && Ty != C->getType()) {
cerr << "Type of operand in unary constant expression should match result" << endl;
return NULL;
}
assert((Opcode == Instruction::Cast || Ty == C->getType()) &&
"Type of operand in unary constant expression should match result");
result = new ConstantExpr(opCode, C, Ty);
ExprConstants.add(Ty, key, result);
return result;
Result = new ConstantExpr(Opcode, C, Ty);
ExprConstants.add(Ty, Key, Result);
return Result;
}
ConstantExpr*
ConstantExpr::get(unsigned opCode, Constant *C1, Constant *C2,const Type *Ty) {
ConstantExpr *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
const Type *Ty) {
// Look up the constant in the table first to ensure uniqueness
vector<Constant*> argVec(1, C1); argVec.push_back(C2);
const ExprMapKeyType& key = make_pair(opCode, argVec);
ConstantExpr* result = ExprConstants.get(Ty, key);
if (result)
return result;
const ExprMapKeyType &Key = make_pair(Opcode, argVec);
ConstantExpr *Result = ExprConstants.get(Ty, Key);
if (Result) return Result;
// Its not in the table so create a new one and put it in the table.
// Check the operands for consistency first
if (opCode < Instruction::FirstBinaryOp ||
opCode >= Instruction::NumBinaryOps) {
cerr << "Invalid opcode " << ConstantExpr::getOpcodeName(opCode)
<< " in binary constant expression" << endl;
return NULL;
}
if (Ty != C1->getType() || Ty != C2->getType()) {
cerr << "Types of both operands in binary constant expression should match result" << endl;
return NULL;
}
assert((Opcode >= Instruction::FirstBinaryOp &&
Opcode < Instruction::NumBinaryOps) &&
"Invalid opcode in binary constant expression");
assert(Ty == C1->getType() && Ty == C2->getType() &&
"Operand types in binary constant expression should match result");
result = new ConstantExpr(opCode, C1, C2, Ty);
ExprConstants.add(Ty, key, result);
return result;
Result = new ConstantExpr(Opcode, C1, C2, Ty);
ExprConstants.add(Ty, Key, Result);
return Result;
}
ConstantExpr*
ConstantExpr::get(unsigned opCode, Constant*C,
const std::vector<Value*>& idxList, const Type *Ty) {
ConstantExpr *ConstantExpr::get(unsigned Opcode, Constant *C,
const std::vector<Constant*> &IdxList,
const Type *Ty) {
// Look up the constant in the table first to ensure uniqueness
vector<Constant*> argVec(1, C);
for(vector<Value*>::const_iterator VI=idxList.begin(), VE=idxList.end();
VI != VE; ++VI)
if (Constant *C = dyn_cast<Constant>(*VI))
argVec.push_back(C);
else {
cerr << "Non-constant index in constant GetElementPtr expr";
return NULL;
}
argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
const ExprMapKeyType& key = make_pair(opCode, argVec);
ConstantExpr* result = ExprConstants.get(Ty, key);
if (result)
return result;
const ExprMapKeyType &Key = make_pair(Opcode, argVec);
ConstantExpr *Result = ExprConstants.get(Ty, Key);
if (Result) return Result;
// Its not in the table so create a new one and put it in the table.
// Check the operands for consistency first
// Must be a getElementPtr. Check for valid getElementPtr expression.
//
if (opCode != Instruction::GetElementPtr) {
cerr << "operator other than GetElementPtr used with an index list" << endl;
return NULL;
}
if (!isa<ConstantPointer>(C)) {
cerr << "Constant GelElementPtr expression using something other than a constant pointer" << endl;
return NULL;
}
if (!isa<PointerType>(Ty)) {
cerr << "Non-pointer type for constant GelElementPtr expression" << endl;
return NULL;
}
const Type* fldType = GetElementPtrInst::getIndexedType(C->getType(),
idxList, true);
if (!fldType) {
cerr << "Invalid index list for constant GelElementPtr expression" << endl;
return NULL;
}
if (cast<PointerType>(Ty)->getElementType() != fldType) {
cerr << "Type for constant GelElementPtr expression does not match field type" << endl;
return NULL;
}
assert(Opcode == Instruction::GetElementPtr &&
"Operator other than GetElementPtr used with an index list");
assert(isa<PointerType>(Ty) &&
"Non-pointer type for constant GelElementPtr expression");
std::vector<Value*> ValIdxList(IdxList.begin(), IdxList.end());
const Type *fldType = GetElementPtrInst::getIndexedType(C->getType(),
ValIdxList, true);
assert(fldType && "Invalid index list for constant GelElementPtr expression");
assert(cast<PointerType>(Ty)->getElementType() == fldType &&
"Type for constant GelElementPtr expression doesn't match field type");
result = new ConstantExpr(opCode, C, idxList, Ty);
ExprConstants.add(Ty, key, result);
return result;
Result = new ConstantExpr(Opcode, C, IdxList, Ty);
ExprConstants.add(Ty, Key, Result);
return Result;
}
// destroyConstant - Remove the constant from the constant table...
@ -513,18 +480,16 @@ void ConstantExpr::destroyConstant() {
destroyConstantImpl();
}
const char*
ConstantExpr::getOpcodeName(unsigned opCode) {
return Instruction::getOpcodeName(opCode);
const char *ConstantExpr::getOpcodeName(unsigned Opcode) {
return Instruction::getOpcodeName(Opcode);
}
//---- ConstantPointerRef::mutateReferences() implementation...
//
unsigned
ConstantPointerRef::mutateReferences(Value* OldV, Value *NewV) {
unsigned ConstantPointerRef::mutateReferences(Value *OldV, Value *NewV) {
assert(getValue() == OldV && "Cannot mutate old value if I'm not using it!");
GlobalValue* NewGV = cast<GlobalValue>(NewV);
GlobalValue *NewGV = cast<GlobalValue>(NewV);
getValue()->getParent()->mutateConstantPointerRef(getValue(), NewGV);
Operands[0] = NewGV;
return 1;
@ -533,14 +498,13 @@ ConstantPointerRef::mutateReferences(Value* OldV, Value *NewV) {
//---- ConstantPointerExpr::mutateReferences() implementation...
//
unsigned
ConstantExpr::mutateReferences(Value* OldV, Value *NewV) {
unsigned numReplaced = 0;
Constant* NewC = cast<Constant>(NewV);
for (unsigned i=0, N = getNumOperands(); i < N; ++i)
unsigned ConstantExpr::mutateReferences(Value* OldV, Value *NewV) {
unsigned NumReplaced = 0;
Constant *NewC = cast<Constant>(NewV);
for (unsigned i = 0, N = getNumOperands(); i != N; ++i)
if (Operands[i] == OldV) {
++numReplaced;
++NumReplaced;
Operands[i] = NewC;
}
return numReplaced;
return NumReplaced;
}