mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-06 06:33:24 +00:00
random code cleanups, no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80682 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
eed51b04e3
commit
61c6ba8571
@ -37,7 +37,7 @@ STATISTIC(NumMemSetInfer, "Number of memsets inferred");
|
||||
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
|
||||
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
|
||||
/// byte store (e.g. i16 0x1234), return null.
|
||||
static Value *isBytewiseValue(Value *V, LLVMContext& Context) {
|
||||
static Value *isBytewiseValue(Value *V, LLVMContext &Context) {
|
||||
// All byte-wide stores are splatable, even of arbitrary variables.
|
||||
if (V->getType() == Type::getInt8Ty(Context)) return V;
|
||||
|
||||
@ -315,9 +315,9 @@ namespace {
|
||||
}
|
||||
|
||||
// Helper fuctions
|
||||
bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
|
||||
bool processMemCpy(MemCpyInst* M);
|
||||
bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
|
||||
bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
|
||||
bool processMemCpy(MemCpyInst *M);
|
||||
bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
|
||||
bool iterateOnFunction(Function &F);
|
||||
};
|
||||
|
||||
@ -336,7 +336,7 @@ static RegisterPass<MemCpyOpt> X("memcpyopt",
|
||||
/// some other patterns to fold away. In particular, this looks for stores to
|
||||
/// neighboring locations of memory. If it sees enough consequtive ones
|
||||
/// (currently 4) it attempts to merge them together into a memcpy/memset.
|
||||
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
|
||||
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
|
||||
if (SI->isVolatile()) return false;
|
||||
|
||||
// There are two cases that are interesting for this code to handle: memcpy
|
||||
@ -495,26 +495,26 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
|
||||
// Deliberately get the source and destination with bitcasts stripped away,
|
||||
// because we'll need to do type comparisons based on the underlying type.
|
||||
Value* cpyDest = cpy->getDest();
|
||||
Value* cpySrc = cpy->getSource();
|
||||
Value *cpyDest = cpy->getDest();
|
||||
Value *cpySrc = cpy->getSource();
|
||||
CallSite CS = CallSite::get(C);
|
||||
|
||||
// We need to be able to reason about the size of the memcpy, so we require
|
||||
// that it be a constant.
|
||||
ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
|
||||
ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
|
||||
if (!cpyLength)
|
||||
return false;
|
||||
|
||||
// Require that src be an alloca. This simplifies the reasoning considerably.
|
||||
AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
||||
AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
||||
if (!srcAlloca)
|
||||
return false;
|
||||
|
||||
// Check that all of src is copied to dest.
|
||||
TargetData* TD = getAnalysisIfAvailable<TargetData>();
|
||||
TargetData *TD = getAnalysisIfAvailable<TargetData>();
|
||||
if (!TD) return false;
|
||||
|
||||
ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
||||
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
||||
if (!srcArraySize)
|
||||
return false;
|
||||
|
||||
@ -527,9 +527,9 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
// Check that accessing the first srcSize bytes of dest will not cause a
|
||||
// trap. Otherwise the transform is invalid since it might cause a trap
|
||||
// to occur earlier than it otherwise would.
|
||||
if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
|
||||
if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
|
||||
// The destination is an alloca. Check it is larger than srcSize.
|
||||
ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
|
||||
ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
|
||||
if (!destArraySize)
|
||||
return false;
|
||||
|
||||
@ -538,13 +538,13 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
|
||||
if (destSize < srcSize)
|
||||
return false;
|
||||
} else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
|
||||
} else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
|
||||
// If the destination is an sret parameter then only accesses that are
|
||||
// outside of the returned struct type can trap.
|
||||
if (!A->hasStructRetAttr())
|
||||
return false;
|
||||
|
||||
const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
|
||||
const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
|
||||
uint64_t destSize = TD->getTypeAllocSize(StructTy);
|
||||
|
||||
if (destSize < srcSize)
|
||||
@ -560,14 +560,14 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
|
||||
srcAlloca->use_end());
|
||||
while (!srcUseList.empty()) {
|
||||
User* UI = srcUseList.back();
|
||||
User *UI = srcUseList.back();
|
||||
srcUseList.pop_back();
|
||||
|
||||
if (isa<BitCastInst>(UI)) {
|
||||
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
|
||||
I != E; ++I)
|
||||
srcUseList.push_back(*I);
|
||||
} else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
|
||||
} else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
|
||||
if (G->hasAllZeroIndices())
|
||||
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
|
||||
I != E; ++I)
|
||||
@ -581,8 +581,8 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
|
||||
// Since we're changing the parameter to the callsite, we need to make sure
|
||||
// that what would be the new parameter dominates the callsite.
|
||||
DominatorTree& DT = getAnalysis<DominatorTree>();
|
||||
if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
|
||||
DominatorTree &DT = getAnalysis<DominatorTree>();
|
||||
if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
|
||||
if (!DT.dominates(cpyDestInst, C))
|
||||
return false;
|
||||
|
||||
@ -590,7 +590,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
// unexpected manner, for example via a global, which we deduce from
|
||||
// the use analysis, we also need to know that it does not sneakily
|
||||
// access dest. We rely on AA to figure this out for us.
|
||||
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
|
||||
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
||||
if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
|
||||
AliasAnalysis::NoModRef)
|
||||
return false;
|
||||
@ -603,11 +603,11 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
|
||||
cpyDest->getName(), C);
|
||||
changedArgument = true;
|
||||
if (CS.getArgument(i)->getType() != cpyDest->getType())
|
||||
if (CS.getArgument(i)->getType() == cpyDest->getType())
|
||||
CS.setArgument(i, cpyDest);
|
||||
else
|
||||
CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
|
||||
CS.getArgument(i)->getType(), cpyDest->getName(), C));
|
||||
else
|
||||
CS.setArgument(i, cpyDest);
|
||||
}
|
||||
|
||||
if (!changedArgument)
|
||||
@ -615,7 +615,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
|
||||
// Drop any cached information about the call, because we may have changed
|
||||
// its dependence information by changing its parameter.
|
||||
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
||||
MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
|
||||
MD.removeInstruction(C);
|
||||
|
||||
// Remove the memcpy
|
||||
@ -630,22 +630,22 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
||||
/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
|
||||
/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
|
||||
/// This allows later passes to remove the first memcpy altogether.
|
||||
bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
||||
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
||||
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
|
||||
MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
|
||||
|
||||
// The are two possible optimizations we can do for memcpy:
|
||||
// a) memcpy-memcpy xform which exposes redundance for DSE
|
||||
// b) call-memcpy xform for return slot optimization
|
||||
// a) memcpy-memcpy xform which exposes redundance for DSE.
|
||||
// b) call-memcpy xform for return slot optimization.
|
||||
MemDepResult dep = MD.getDependency(M);
|
||||
if (!dep.isClobber())
|
||||
return false;
|
||||
if (!isa<MemCpyInst>(dep.getInst())) {
|
||||
if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
|
||||
if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
|
||||
return performCallSlotOptzn(M, C);
|
||||
return false;
|
||||
}
|
||||
|
||||
MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
|
||||
MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
|
||||
|
||||
// We can only transforms memcpy's where the dest of one is the source of the
|
||||
// other
|
||||
@ -654,8 +654,8 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
||||
|
||||
// Second, the length of the memcpy's must be the same, or the preceeding one
|
||||
// must be larger than the following one.
|
||||
ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
||||
ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
|
||||
ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
||||
ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
|
||||
if (!C1 || !C2)
|
||||
return false;
|
||||
|
||||
@ -667,7 +667,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
||||
|
||||
// Finally, we have to make sure that the dest of the second does not
|
||||
// alias the source of the first
|
||||
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
|
||||
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
||||
if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
|
||||
AliasAnalysis::NoAlias)
|
||||
return false;
|
||||
@ -681,7 +681,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
||||
// If all checks passed, then we can transform these memcpy's
|
||||
const Type *Tys[1];
|
||||
Tys[0] = M->getLength()->getType();
|
||||
Function* MemCpyFun = Intrinsic::getDeclaration(
|
||||
Function *MemCpyFun = Intrinsic::getDeclaration(
|
||||
M->getParent()->getParent()->getParent(),
|
||||
M->getIntrinsicID(), Tys, 1);
|
||||
|
||||
@ -689,7 +689,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
||||
M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
|
||||
};
|
||||
|
||||
CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
|
||||
CallInst *C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
|
||||
|
||||
|
||||
// If C and M don't interfere, then this is a valid transformation. If they
|
||||
@ -708,41 +708,40 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
|
||||
// function.
|
||||
//
|
||||
bool MemCpyOpt::runOnFunction(Function& F) {
|
||||
|
||||
bool changed = false;
|
||||
bool shouldContinue = true;
|
||||
|
||||
while (shouldContinue) {
|
||||
shouldContinue = iterateOnFunction(F);
|
||||
changed |= shouldContinue;
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
|
||||
// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
|
||||
// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
|
||||
bool MemCpyOpt::iterateOnFunction(Function &F) {
|
||||
bool changed_function = false;
|
||||
bool MadeChange = false;
|
||||
|
||||
// Walk all instruction in the function
|
||||
// Walk all instruction in the function.
|
||||
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
|
||||
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
|
||||
BI != BE;) {
|
||||
// Avoid invalidating the iterator
|
||||
Instruction* I = BI++;
|
||||
// Avoid invalidating the iterator.
|
||||
Instruction *I = BI++;
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
||||
changed_function |= processStore(SI, BI);
|
||||
else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
|
||||
changed_function |= processMemCpy(M);
|
||||
}
|
||||
MadeChange |= processStore(SI, BI);
|
||||
else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
|
||||
MadeChange |= processMemCpy(M);
|
||||
}
|
||||
}
|
||||
|
||||
return changed_function;
|
||||
return MadeChange;
|
||||
}
|
||||
|
||||
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
|
||||
// function.
|
||||
//
|
||||
bool MemCpyOpt::runOnFunction(Function &F) {
|
||||
bool MadeChange = false;
|
||||
while (1) {
|
||||
if (!iterateOnFunction(F))
|
||||
break;
|
||||
MadeChange = true;
|
||||
}
|
||||
|
||||
return MadeChange;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user