Implement Transforms/SimplifyCFG/switch_thread.ll

This does a simple form of "jump threading", which eliminates CFG edges that
are provably dead.  This triggers 90 times in the external tests, and
eliminating CFG edges is always always a good thing! :)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20300 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2005-02-24 06:17:52 +00:00
parent d802347a2e
commit 623369ac56

View File

@ -420,6 +420,175 @@ GetValueEqualityComparisonCases(TerminatorInst *TI,
}
// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
for (unsigned i = 0, e = Cases.size(); i != e; ++i)
if (Cases[i].second == BB) {
Cases.erase(Cases.begin()+i);
--i; --e;
}
}
// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
// well.
static bool
ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
// Make V1 be smaller than V2.
if (V1->size() > V2->size())
std::swap(V1, V2);
if (V1->size() == 0) return false;
if (V1->size() == 1) {
// Just scan V2.
ConstantInt *TheVal = (*V1)[0].first;
for (unsigned i = 0, e = V2->size(); i != e; ++i)
if (TheVal == (*V2)[i].first)
return true;
}
// Otherwise, just sort both lists and compare element by element.
std::sort(V1->begin(), V1->end());
std::sort(V2->begin(), V2->end());
unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
while (i1 != e1 && i2 != e2) {
if ((*V1)[i1].first == (*V2)[i2].first)
return true;
if ((*V1)[i1].first < (*V2)[i2].first)
++i1;
else
++i2;
}
return false;
}
// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
// terminator instruction and its block is known to only have a single
// predecessor block, check to see if that predecessor is also a value
// comparison with the same value, and if that comparison determines the outcome
// of this comparison. If so, simplify TI. This does a very limited form of
// jump threading.
static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
BasicBlock *Pred) {
Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
if (!PredVal) return false; // Not a value comparison in predecessor.
Value *ThisVal = isValueEqualityComparison(TI);
assert(ThisVal && "This isn't a value comparison!!");
if (ThisVal != PredVal) return false; // Different predicates.
// Find out information about when control will move from Pred to TI's block.
std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
PredCases);
EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
// Find information about how control leaves this block.
std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
// If TI's block is the default block from Pred's comparison, potentially
// simplify TI based on this knowledge.
if (PredDef == TI->getParent()) {
// If we are here, we know that the value is none of those cases listed in
// PredCases. If there are any cases in ThisCases that are in PredCases, we
// can simplify TI.
if (ValuesOverlap(PredCases, ThisCases)) {
if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
// Okay, one of the successors of this condbr is dead. Convert it to a
// uncond br.
assert(ThisCases.size() == 1 && "Branch can only have one case!");
Value *Cond = BTI->getCondition();
// Insert the new branch.
Instruction *NI = new BranchInst(ThisDef, TI);
// Remove PHI node entries for the dead edge.
ThisCases[0].second->removePredecessor(TI->getParent());
DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
TI->eraseFromParent(); // Nuke the old one.
// If condition is now dead, nuke it.
if (Instruction *CondI = dyn_cast<Instruction>(Cond))
ErasePossiblyDeadInstructionTree(CondI);
return true;
} else {
SwitchInst *SI = cast<SwitchInst>(TI);
// Okay, TI has cases that are statically dead, prune them away.
std::set<Constant*> DeadCases;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
DeadCases.insert(PredCases[i].first);
DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI);
for (unsigned i = SI->getNumCases()-1; i != 0; --i)
if (DeadCases.count(SI->getCaseValue(i))) {
SI->getSuccessor(i)->removePredecessor(TI->getParent());
SI->removeCase(i);
}
DEBUG(std::cerr << "Leaving: " << *TI << "\n");
return true;
}
}
} else {
// Otherwise, TI's block must correspond to some matched value. Find out
// which value (or set of values) this is.
ConstantInt *TIV = 0;
BasicBlock *TIBB = TI->getParent();
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].second == TIBB)
if (TIV == 0)
TIV = PredCases[i].first;
else
return false; // Cannot handle multiple values coming to this block.
assert(TIV && "No edge from pred to succ?");
// Okay, we found the one constant that our value can be if we get into TI's
// BB. Find out which successor will unconditionally be branched to.
BasicBlock *TheRealDest = 0;
for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
if (ThisCases[i].first == TIV) {
TheRealDest = ThisCases[i].second;
break;
}
// If not handled by any explicit cases, it is handled by the default case.
if (TheRealDest == 0) TheRealDest = ThisDef;
// Remove PHI node entries for dead edges.
BasicBlock *CheckEdge = TheRealDest;
for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
if (*SI != CheckEdge)
(*SI)->removePredecessor(TIBB);
else
CheckEdge = 0;
// Insert the new branch.
Instruction *NI = new BranchInst(TheRealDest, TI);
DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
Instruction *Cond = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
Cond = dyn_cast<Instruction>(BI->getCondition());
TI->eraseFromParent(); // Nuke the old one.
if (Cond) ErasePossiblyDeadInstructionTree(Cond);
return true;
}
return false;
}
// FoldValueComparisonIntoPredecessors - The specified terminator is a value
// equality comparison instruction (either a switch or a branch on "X == c").
// See if any of the predecessors of the terminator block are value comparisons
@ -908,13 +1077,30 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
return true;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
if (isValueEqualityComparison(SI))
if (FoldValueComparisonIntoPredecessors(SI))
return SimplifyCFG(BB) || 1;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
if (isValueEqualityComparison(SI)) {
// If we only have one predecessor, and if it is a branch on this value,
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
return SimplifyCFG(BB) || 1;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
if (SI == &BB->front())
if (FoldValueComparisonIntoPredecessors(SI))
return SimplifyCFG(BB) || 1;
}
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
if (BI->isConditional()) {
if (Value *CompVal = isValueEqualityComparison(BI)) {
// If we only have one predecessor, and if it is a branch on this value,
// see if that predecessor totally determines the outcome of this
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
return SimplifyCFG(BB) || 1;
// This block must be empty, except for the setcond inst, if it exists.
BasicBlock::iterator I = BB->begin();
if (&*I == BI ||