Rewrite shift/and/compare sequences to promote better licm of the RHS.

Use isLogicalShift/isArithmeticShift to simplify code.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30448 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2006-09-18 04:22:48 +00:00
parent 20fdab6fbf
commit 65b72baa59

View File

@ -3856,7 +3856,7 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
// happens a LOT in code produced by the C front-end, for bitfield // happens a LOT in code produced by the C front-end, for bitfield
// access. // access.
ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0)); ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); Constant *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
// Check to see if there is a noop-cast between the shift and the and. // Check to see if there is a noop-cast between the shift and the and.
if (!Shift) { if (!Shift) {
@ -3876,8 +3876,7 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
// into the mask. This can only happen with signed shift // into the mask. This can only happen with signed shift
// rights, as they sign-extend. // rights, as they sign-extend.
if (ShAmt) { if (ShAmt) {
bool CanFold = Shift->getOpcode() != Instruction::Shr || bool CanFold = Shift->isLogicalShift();
Ty->isUnsigned();
if (!CanFold) { if (!CanFold) {
// To test for the bad case of the signed shr, see if any // To test for the bad case of the signed shr, see if any
// of the bits shifted in could be tested after the mask. // of the bits shifted in could be tested after the mask.
@ -3930,15 +3929,49 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
} }
} }
} }
// Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
// preferable because it allows the C<<Y expression to be hoisted out
// of a loop if Y is invariant and X is not.
if (Shift && Shift->hasOneUse() && CI->isNullValue() &&
I.isEquality() && !Shift->isArithmeticShift()) {
// Compute C << Y.
Value *NS;
if (Shift->getOpcode() == Instruction::Shr) {
NS = new ShiftInst(Instruction::Shl, AndCST, Shift->getOperand(1),
"tmp");
} else {
// Make sure we insert a logical shift.
if (AndCST->getType()->isSigned())
AndCST = ConstantExpr::getCast(AndCST,
AndCST->getType()->getUnsignedVersion());
NS = new ShiftInst(Instruction::Shr, AndCST, Shift->getOperand(1),
"tmp");
}
InsertNewInstBefore(cast<Instruction>(NS), I);
// If C's sign doesn't agree with the and, insert a cast now.
if (NS->getType() != LHSI->getType())
NS = InsertCastBefore(NS, LHSI->getType(), I);
Value *ShiftOp = Shift->getOperand(0);
if (ShiftOp->getType() != LHSI->getType())
ShiftOp = InsertCastBefore(ShiftOp, LHSI->getType(), I);
// Compute X & (C << Y).
Instruction *NewAnd =
BinaryOperator::createAnd(ShiftOp, NS, LHSI->getName());
InsertNewInstBefore(NewAnd, I);
I.setOperand(0, NewAnd);
return &I;
}
} }
break; break;
case Instruction::Shl: // (setcc (shl X, ShAmt), CI) case Instruction::Shl: // (setcc (shl X, ShAmt), CI)
if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) { if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
switch (I.getOpcode()) { if (I.isEquality()) {
default: break;
case Instruction::SetEQ:
case Instruction::SetNE: {
unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits(); unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
// Check that the shift amount is in range. If not, don't perform // Check that the shift amount is in range. If not, don't perform
@ -3979,17 +4012,12 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
ConstantExpr::getUShr(CI, ShAmt)); ConstantExpr::getUShr(CI, ShAmt));
} }
} }
}
} }
break; break;
case Instruction::Shr: // (setcc (shr X, ShAmt), CI) case Instruction::Shr: // (setcc (shr X, ShAmt), CI)
if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) { if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
switch (I.getOpcode()) { if (I.isEquality()) {
default: break;
case Instruction::SetEQ:
case Instruction::SetNE: {
// Check that the shift amount is in range. If not, don't perform // Check that the shift amount is in range. If not, don't perform
// undefined shifts. When the shift is visited it will be // undefined shifts. When the shift is visited it will be
// simplified. // simplified.
@ -4030,8 +4058,6 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
return new SetCondInst(I.getOpcode(), And, return new SetCondInst(I.getOpcode(), And,
ConstantExpr::getShl(CI, ShAmt)); ConstantExpr::getShl(CI, ShAmt));
} }
break;
}
} }
} }
break; break;
@ -4130,8 +4156,7 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
} }
// Simplify seteq and setne instructions... // Simplify seteq and setne instructions...
if (I.getOpcode() == Instruction::SetEQ || if (I.isEquality()) {
I.getOpcode() == Instruction::SetNE) {
bool isSetNE = I.getOpcode() == Instruction::SetNE; bool isSetNE = I.getOpcode() == Instruction::SetNE;
// If the first operand is (and|or|xor) with a constant, and the second // If the first operand is (and|or|xor) with a constant, and the second
@ -4361,9 +4386,7 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
if (CastInst *CI = dyn_cast<CastInst>(Op0)) { if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Value *CastOp0 = CI->getOperand(0); Value *CastOp0 = CI->getOperand(0);
if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) && if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
(isa<Constant>(Op1) || isa<CastInst>(Op1)) && (isa<Constant>(Op1) || isa<CastInst>(Op1)) && I.isEquality()) {
(I.getOpcode() == Instruction::SetEQ ||
I.getOpcode() == Instruction::SetNE)) {
// We keep moving the cast from the left operand over to the right // We keep moving the cast from the left operand over to the right
// operand, where it can often be eliminated completely. // operand, where it can often be eliminated completely.
Op0 = CastOp0; Op0 = CastOp0;
@ -4398,8 +4421,7 @@ Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
return R; return R;
} }
if (I.getOpcode() == Instruction::SetNE || if (I.isEquality()) {
I.getOpcode() == Instruction::SetEQ) {
Value *A, *B; Value *A, *B;
if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1)) { (A == Op1 || B == Op1)) {
@ -4552,7 +4574,7 @@ Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
return R; return R;
// See if we can turn a signed shr into an unsigned shr. // See if we can turn a signed shr into an unsigned shr.
if (!isLeftShift && I.getType()->isSigned()) { if (I.isArithmeticShift()) {
if (MaskedValueIsZero(Op0, if (MaskedValueIsZero(Op0,
1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) { 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I); Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I);
@ -5617,10 +5639,8 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
// non-constant value, eliminate this whole mess. This corresponds to // non-constant value, eliminate this whole mess. This corresponds to
// cases like this: ((X & 27) ? 27 : 0) // cases like this: ((X & 27) ? 27 : 0)
if (TrueValC->isNullValue() || FalseValC->isNullValue()) if (TrueValC->isNullValue() || FalseValC->isNullValue())
if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition())) if (SetCondInst *IC = dyn_cast<SetCondInst>(SI.getCondition()))
if ((IC->getOpcode() == Instruction::SetEQ || if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
IC->getOpcode() == Instruction::SetNE) &&
isa<ConstantInt>(IC->getOperand(1)) &&
cast<Constant>(IC->getOperand(1))->isNullValue()) cast<Constant>(IC->getOperand(1))->isNullValue())
if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0))) if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
if (ICA->getOpcode() == Instruction::And && if (ICA->getOpcode() == Instruction::And &&