mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 16:33:28 +00:00
LiveRangeCalc: Rewrite subrange calculation
This changes subrange calculation to calculate subranges sequentially instead of in parallel. The code is easier to understand that way and addresses the code review issues raised about LiveOutData being hard to understand/needing more comments by removing them :) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224313 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
8b3754208f
commit
68445710a2
@ -192,8 +192,7 @@ void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
|
||||
assert(LRCalc && "LRCalc not initialized.");
|
||||
assert(LI.empty() && "Should only compute empty intervals.");
|
||||
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
|
||||
LRCalc->createDeadDefs(LI);
|
||||
LRCalc->extendToUses(LI);
|
||||
LRCalc->calculate(LI);
|
||||
computeDeadValues(LI, LI);
|
||||
}
|
||||
|
||||
|
@ -19,6 +19,13 @@ using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "regalloc"
|
||||
|
||||
void LiveRangeCalc::resetLiveOutMap() {
|
||||
unsigned NumBlocks = MF->getNumBlockIDs();
|
||||
Seen.clear();
|
||||
Seen.resize(NumBlocks);
|
||||
Map.resize(NumBlocks);
|
||||
}
|
||||
|
||||
void LiveRangeCalc::reset(const MachineFunction *mf,
|
||||
SlotIndexes *SI,
|
||||
MachineDominatorTree *MDT,
|
||||
@ -28,32 +35,36 @@ void LiveRangeCalc::reset(const MachineFunction *mf,
|
||||
Indexes = SI;
|
||||
DomTree = MDT;
|
||||
Alloc = VNIA;
|
||||
|
||||
MainLiveOutData.reset(MF->getNumBlockIDs());
|
||||
resetLiveOutMap();
|
||||
LiveIn.clear();
|
||||
}
|
||||
|
||||
|
||||
static SlotIndex getDefIndex(const SlotIndexes &Indexes, const MachineInstr &MI,
|
||||
bool EarlyClobber) {
|
||||
// PHI defs begin at the basic block start index.
|
||||
if (MI.isPHI())
|
||||
return Indexes.getMBBStartIdx(MI.getParent());
|
||||
static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
|
||||
LiveRange &LR, const MachineOperand &MO) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
SlotIndex DefIdx;
|
||||
if (MI->isPHI())
|
||||
DefIdx = Indexes.getMBBStartIdx(MI->getParent());
|
||||
else
|
||||
DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
|
||||
|
||||
// Instructions are either normal 'r', or early clobber 'e'.
|
||||
return Indexes.getInstructionIndex(&MI).getRegSlot(EarlyClobber);
|
||||
// Create the def in LR. This may find an existing def.
|
||||
LR.createDeadDef(DefIdx, Alloc);
|
||||
}
|
||||
|
||||
void LiveRangeCalc::createDeadDefs(LiveInterval &LI) {
|
||||
void LiveRangeCalc::calculate(LiveInterval &LI) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
// Step 1: Create minimal live segments for every definition of Reg.
|
||||
// Visit all def operands. If the same instruction has multiple defs of Reg,
|
||||
// LR.createDeadDef() will deduplicate.
|
||||
// createDeadDef() will deduplicate.
|
||||
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
|
||||
unsigned Reg = LI.reg;
|
||||
for (const MachineOperand &MO : MRI->def_operands(Reg)) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
|
||||
for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
|
||||
if (!MO.isDef() && !MO.readsReg())
|
||||
continue;
|
||||
|
||||
unsigned SubReg = MO.getSubReg();
|
||||
if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) {
|
||||
unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
|
||||
@ -82,18 +93,36 @@ void LiveRangeCalc::createDeadDefs(LiveInterval &LI) {
|
||||
assert(Common == S.LaneMask);
|
||||
CommonRange = &S;
|
||||
}
|
||||
CommonRange->createDeadDef(Idx, *Alloc);
|
||||
if (MO.isDef())
|
||||
createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
|
||||
Mask &= ~Common;
|
||||
}
|
||||
// Create a new SubRange for subregs we did not cover yet.
|
||||
if (Mask != 0) {
|
||||
LiveInterval::SubRange *SubRange = LI.createSubRange(*Alloc, Mask);
|
||||
SubRange->createDeadDef(Idx, *Alloc);
|
||||
LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
|
||||
if (MO.isDef())
|
||||
createDeadDef(*Indexes, *Alloc, *NewRange, MO);
|
||||
}
|
||||
}
|
||||
|
||||
// Create the def in LR. This may find an existing def.
|
||||
LI.createDeadDef(Idx, *Alloc);
|
||||
// Create the def in the main liverange.
|
||||
if (MO.isDef())
|
||||
createDeadDef(*Indexes, *Alloc, LI, MO);
|
||||
}
|
||||
|
||||
// We may have created empty live ranges for partially undefined uses, we
|
||||
// can't keep them because we won't find defs in them later.
|
||||
LI.removeEmptySubRanges();
|
||||
|
||||
// Step 2: Extend live segments to all uses, constructing SSA form as
|
||||
// necessary.
|
||||
for (LiveInterval::SubRange &S : LI.subranges()) {
|
||||
resetLiveOutMap();
|
||||
extendToUses(S, Reg, S.LaneMask);
|
||||
}
|
||||
|
||||
resetLiveOutMap();
|
||||
extendToUses(LI, Reg, ~0u);
|
||||
}
|
||||
|
||||
|
||||
@ -102,135 +131,67 @@ void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
|
||||
|
||||
// Visit all def operands. If the same instruction has multiple defs of Reg,
|
||||
// LR.createDeadDef() will deduplicate.
|
||||
for (MachineOperand &MO : MRI->def_operands(Reg)) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
|
||||
// Create the def in LR. This may find an existing def.
|
||||
LR.createDeadDef(Idx, *Alloc);
|
||||
}
|
||||
for (MachineOperand &MO : MRI->def_operands(Reg))
|
||||
createDeadDef(*Indexes, *Alloc, LR, MO);
|
||||
}
|
||||
|
||||
|
||||
static SlotIndex getUseIndex(const SlotIndexes &Indexes,
|
||||
const MachineOperand &MO) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
unsigned OpNo = (&MO - &MI->getOperand(0));
|
||||
if (MI->isPHI()) {
|
||||
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
|
||||
// The actual place where a phi operand is used is the end of the pred MBB.
|
||||
// PHI operands are paired: (Reg, PredMBB).
|
||||
return Indexes.getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
|
||||
}
|
||||
|
||||
// Check for early-clobber redefs.
|
||||
bool isEarlyClobber = false;
|
||||
unsigned DefIdx;
|
||||
if (MO.isDef()) {
|
||||
isEarlyClobber = MO.isEarlyClobber();
|
||||
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
|
||||
// FIXME: This would be a lot easier if tied early-clobber uses also
|
||||
// had an early-clobber flag.
|
||||
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
|
||||
}
|
||||
return Indexes.getInstructionIndex(MI).getRegSlot(isEarlyClobber);
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
|
||||
// Visit all operands that read Reg. This may include partial defs.
|
||||
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
|
||||
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
|
||||
// Clear all kill flags. They will be reinserted after register allocation
|
||||
// by LiveIntervalAnalysis::addKillFlags().
|
||||
if (MO.isUse())
|
||||
MO.setIsKill(false);
|
||||
else {
|
||||
// We only care about uses, but on the main range (mask ~0u) this includes
|
||||
// the "virtual" reads happening for subregister defs.
|
||||
if (Mask != ~0u)
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!MO.readsReg())
|
||||
continue;
|
||||
unsigned SubReg = MO.getSubReg();
|
||||
if (SubReg != 0) {
|
||||
unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
|
||||
// Ignore uses not covering the current subrange.
|
||||
if ((SubRegMask & Mask) == 0)
|
||||
continue;
|
||||
}
|
||||
|
||||
// Determine the actual place of the use.
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
unsigned OpNo = (&MO - &MI->getOperand(0));
|
||||
SlotIndex UseIdx;
|
||||
if (MI->isPHI()) {
|
||||
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
|
||||
// The actual place where a phi operand is used is the end of the pred
|
||||
// MBB. PHI operands are paired: (Reg, PredMBB).
|
||||
UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
|
||||
} else {
|
||||
// Check for early-clobber redefs.
|
||||
bool isEarlyClobber = false;
|
||||
unsigned DefIdx;
|
||||
if (MO.isDef())
|
||||
isEarlyClobber = MO.isEarlyClobber();
|
||||
else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
|
||||
// FIXME: This would be a lot easier if tied early-clobber uses also
|
||||
// had an early-clobber flag.
|
||||
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
|
||||
}
|
||||
UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
|
||||
}
|
||||
|
||||
// MI is reading Reg. We may have visited MI before if it happens to be
|
||||
// reading Reg multiple times. That is OK, extend() is idempotent.
|
||||
SlotIndex Idx = getUseIndex(*Indexes, MO);
|
||||
extend(LR, Idx, Reg, MainLiveOutData);
|
||||
extend(LR, UseIdx, Reg);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::extendToUses(LiveInterval &LI) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
|
||||
SmallVector<LiveOutData,2> LiveOuts;
|
||||
unsigned NumSubRanges = 0;
|
||||
for (const auto &S : LI.subranges()) {
|
||||
(void)S;
|
||||
++NumSubRanges;
|
||||
LiveOuts.push_back(LiveOutData());
|
||||
LiveOuts.back().reset(MF->getNumBlockIDs());
|
||||
}
|
||||
|
||||
// Visit all operands that read Reg. This may include partial defs.
|
||||
unsigned Reg = LI.reg;
|
||||
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
|
||||
// Clear all kill flags. They will be reinserted after register allocation
|
||||
// by LiveIntervalAnalysis::addKillFlags().
|
||||
if (MO.isUse())
|
||||
MO.setIsKill(false);
|
||||
if (!MO.readsReg())
|
||||
continue;
|
||||
SlotIndex Idx = getUseIndex(*Indexes, MO);
|
||||
unsigned SubReg = MO.getSubReg();
|
||||
if (MO.isUse() && (LI.hasSubRanges() ||
|
||||
(MRI->tracksSubRegLiveness() && SubReg != 0))) {
|
||||
unsigned Mask = SubReg != 0
|
||||
? TRI.getSubRegIndexLaneMask(SubReg)
|
||||
: MRI->getMaxLaneMaskForVReg(Reg);
|
||||
|
||||
// If this is the first time we see a subregister def/use. Initialize
|
||||
// subranges by creating a copy of the main range.
|
||||
if (!LI.hasSubRanges()) {
|
||||
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
|
||||
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
|
||||
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
|
||||
LiveOuts.front().reset(MF->getNumBlockIDs());
|
||||
++NumSubRanges;
|
||||
}
|
||||
unsigned SubRangeIdx = 0;
|
||||
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
|
||||
SE = LI.subrange_end(); S != SE; ++S, ++SubRangeIdx) {
|
||||
// A Mask for subregs common to the existing subrange and current def.
|
||||
unsigned Common = S->LaneMask & Mask;
|
||||
if (Common == 0)
|
||||
continue;
|
||||
// A Mask for subregs covered by the subrange but not the current def.
|
||||
unsigned LRest = S->LaneMask & ~Mask;
|
||||
LiveInterval::SubRange *CommonRange;
|
||||
unsigned CommonRangeIdx;
|
||||
if (LRest != 0) {
|
||||
// Split current subrange into Common and LRest ranges.
|
||||
S->LaneMask = LRest;
|
||||
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
|
||||
CommonRangeIdx = 0;
|
||||
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
|
||||
LiveOuts.front().reset(MF->getNumBlockIDs());
|
||||
++NumSubRanges;
|
||||
++SubRangeIdx;
|
||||
} else {
|
||||
// The subrange and current def lanemasks match completely.
|
||||
assert(Common == S->LaneMask);
|
||||
CommonRange = &*S;
|
||||
CommonRangeIdx = SubRangeIdx;
|
||||
}
|
||||
extend(*CommonRange, Idx, Reg, LiveOuts[CommonRangeIdx]);
|
||||
Mask &= ~Common;
|
||||
}
|
||||
assert(SubRangeIdx == NumSubRanges);
|
||||
}
|
||||
extend(LI, Idx, Reg, MainLiveOutData);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
|
||||
void LiveRangeCalc::updateFromLiveIns() {
|
||||
LiveRangeUpdater Updater;
|
||||
for (const LiveInBlock &I : LiveIn) {
|
||||
if (!I.DomNode)
|
||||
@ -246,8 +207,8 @@ void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
|
||||
else {
|
||||
// The value is live-through, update LiveOut as well.
|
||||
// Defer the Domtree lookup until it is needed.
|
||||
assert(LiveOuts.Seen.test(MBB->getNumber()));
|
||||
LiveOuts.Map[MBB] = LiveOutPair(I.Value, nullptr);
|
||||
assert(Seen.test(MBB->getNumber()));
|
||||
Map[MBB] = LiveOutPair(I.Value, nullptr);
|
||||
}
|
||||
Updater.setDest(&I.LR);
|
||||
Updater.add(Start, End, I.Value);
|
||||
@ -256,8 +217,7 @@ void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
|
||||
LiveOutData &LiveOuts) {
|
||||
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
|
||||
assert(Kill.isValid() && "Invalid SlotIndex");
|
||||
assert(Indexes && "Missing SlotIndexes");
|
||||
assert(DomTree && "Missing dominator tree");
|
||||
@ -273,28 +233,27 @@ void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
|
||||
// multiple values, and we may need to create even more phi-defs to preserve
|
||||
// VNInfo SSA form. Perform a search for all predecessor blocks where we
|
||||
// know the dominating VNInfo.
|
||||
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg, LiveOuts))
|
||||
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg))
|
||||
return;
|
||||
|
||||
// When there were multiple different values, we may need new PHIs.
|
||||
calculateValues(LiveOuts);
|
||||
calculateValues();
|
||||
}
|
||||
|
||||
|
||||
// This function is called by a client after using the low-level API to add
|
||||
// live-out and live-in blocks. The unique value optimization is not
|
||||
// available, SplitEditor::transferValues handles that case directly anyway.
|
||||
void LiveRangeCalc::calculateValues(LiveOutData &LiveOuts) {
|
||||
void LiveRangeCalc::calculateValues() {
|
||||
assert(Indexes && "Missing SlotIndexes");
|
||||
assert(DomTree && "Missing dominator tree");
|
||||
updateSSA(LiveOuts);
|
||||
updateFromLiveIns(LiveOuts);
|
||||
updateSSA();
|
||||
updateFromLiveIns();
|
||||
}
|
||||
|
||||
|
||||
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
SlotIndex Kill, unsigned PhysReg,
|
||||
LiveOutData &LiveOuts) {
|
||||
SlotIndex Kill, unsigned PhysReg) {
|
||||
unsigned KillMBBNum = KillMBB.getNumber();
|
||||
|
||||
// Block numbers where LR should be live-in.
|
||||
@ -328,8 +287,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
MachineBasicBlock *Pred = *PI;
|
||||
|
||||
// Is this a known live-out block?
|
||||
if (LiveOuts.Seen.test(Pred->getNumber())) {
|
||||
if (VNInfo *VNI = LiveOuts.Map[Pred].first) {
|
||||
if (Seen.test(Pred->getNumber())) {
|
||||
if (VNInfo *VNI = Map[Pred].first) {
|
||||
if (TheVNI && TheVNI != VNI)
|
||||
UniqueVNI = false;
|
||||
TheVNI = VNI;
|
||||
@ -343,7 +302,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
// First time we see Pred. Try to determine the live-out value, but set
|
||||
// it as null if Pred is live-through with an unknown value.
|
||||
VNInfo *VNI = LR.extendInBlock(Start, End);
|
||||
LiveOuts.setLiveOutValue(Pred, VNI);
|
||||
setLiveOutValue(Pred, VNI);
|
||||
if (VNI) {
|
||||
if (TheVNI && TheVNI != VNI)
|
||||
UniqueVNI = false;
|
||||
@ -378,8 +337,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
if (*I == KillMBBNum && Kill.isValid())
|
||||
End = Kill;
|
||||
else
|
||||
LiveOuts.Map[MF->getBlockNumbered(*I)] =
|
||||
LiveOutPair(TheVNI, nullptr);
|
||||
Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
|
||||
Updater.add(Start, End, TheVNI);
|
||||
}
|
||||
return true;
|
||||
@ -402,7 +360,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
|
||||
// This is essentially the same iterative algorithm that SSAUpdater uses,
|
||||
// except we already have a dominator tree, so we don't have to recompute it.
|
||||
void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
|
||||
void LiveRangeCalc::updateSSA() {
|
||||
assert(Indexes && "Missing SlotIndexes");
|
||||
assert(DomTree && "Missing dominator tree");
|
||||
|
||||
@ -423,23 +381,22 @@ void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
|
||||
|
||||
// We need a live-in value to a block with no immediate dominator?
|
||||
// This is probably an unreachable block that has survived somehow.
|
||||
bool needPHI = !IDom
|
||||
|| !LiveOuts.Seen.test(IDom->getBlock()->getNumber());
|
||||
bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
|
||||
|
||||
// IDom dominates all of our predecessors, but it may not be their
|
||||
// immediate dominator. Check if any of them have live-out values that are
|
||||
// properly dominated by IDom. If so, we need a phi-def here.
|
||||
if (!needPHI) {
|
||||
IDomValue = LiveOuts.Map[IDom->getBlock()];
|
||||
IDomValue = Map[IDom->getBlock()];
|
||||
|
||||
// Cache the DomTree node that defined the value.
|
||||
if (IDomValue.first && !IDomValue.second)
|
||||
LiveOuts.Map[IDom->getBlock()].second = IDomValue.second =
|
||||
Map[IDom->getBlock()].second = IDomValue.second =
|
||||
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
|
||||
|
||||
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
||||
PE = MBB->pred_end(); PI != PE; ++PI) {
|
||||
LiveOutPair &Value = LiveOuts.Map[*PI];
|
||||
LiveOutPair &Value = Map[*PI];
|
||||
if (!Value.first || Value.first == IDomValue.first)
|
||||
continue;
|
||||
|
||||
@ -461,7 +418,7 @@ void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
|
||||
// The value may be live-through even if Kill is set, as can happen when
|
||||
// we are called from extendRange. In that case LiveOutSeen is true, and
|
||||
// LiveOut indicates a foreign or missing value.
|
||||
LiveOutPair &LOP = LiveOuts.Map[MBB];
|
||||
LiveOutPair &LOP = Map[MBB];
|
||||
|
||||
// Create a phi-def if required.
|
||||
if (needPHI) {
|
||||
|
@ -47,44 +47,30 @@ class LiveRangeCalc {
|
||||
/// LiveOutMap - Map basic blocks to the value leaving the block.
|
||||
typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
|
||||
|
||||
struct LiveOutData {
|
||||
/// Seen - Bit vector of active entries in LiveOut, also used as a visited
|
||||
/// set by findReachingDefs. One entry per basic block, indexed by block
|
||||
/// number. This is kept as a separate bit vector because it can be cleared
|
||||
/// quickly when switching live ranges.
|
||||
BitVector Seen;
|
||||
/// Bit vector of active entries in LiveOut, also used as a visited set by
|
||||
/// findReachingDefs. One entry per basic block, indexed by block number.
|
||||
/// This is kept as a separate bit vector because it can be cleared quickly
|
||||
/// when switching live ranges.
|
||||
BitVector Seen;
|
||||
|
||||
/// LiveOut - Map each basic block where a live range is live out to the
|
||||
/// live-out value and its defining block.
|
||||
///
|
||||
/// For every basic block, MBB, one of these conditions shall be true:
|
||||
///
|
||||
/// 1. !Seen.count(MBB->getNumber())
|
||||
/// Blocks without a Seen bit are ignored.
|
||||
/// 2. LiveOut[MBB].second.getNode() == MBB
|
||||
/// The live-out value is defined in MBB.
|
||||
/// 3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB]
|
||||
/// The live-out value passses through MBB. All predecessors must carry
|
||||
/// the same value.
|
||||
///
|
||||
/// The domtree node may be null, it can be computed.
|
||||
///
|
||||
/// The map can be shared by multiple live ranges as long as no two are
|
||||
/// live-out of the same block.
|
||||
LiveOutMap Map;
|
||||
|
||||
void reset(unsigned NumBlocks) {
|
||||
Seen.clear();
|
||||
Seen.resize(NumBlocks);
|
||||
Map.resize(NumBlocks);
|
||||
}
|
||||
|
||||
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
|
||||
Seen.set(MBB->getNumber());
|
||||
Map[MBB] = LiveOutPair(VNI, nullptr);
|
||||
}
|
||||
};
|
||||
LiveOutData MainLiveOutData;
|
||||
/// Map each basic block where a live range is live out to the live-out value
|
||||
/// and its defining block.
|
||||
///
|
||||
/// For every basic block, MBB, one of these conditions shall be true:
|
||||
///
|
||||
/// 1. !Seen.count(MBB->getNumber())
|
||||
/// Blocks without a Seen bit are ignored.
|
||||
/// 2. LiveOut[MBB].second.getNode() == MBB
|
||||
/// The live-out value is defined in MBB.
|
||||
/// 3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB]
|
||||
/// The live-out value passses through MBB. All predecessors must carry
|
||||
/// the same value.
|
||||
///
|
||||
/// The domtree node may be null, it can be computed.
|
||||
///
|
||||
/// The map can be shared by multiple live ranges as long as no two are
|
||||
/// live-out of the same block.
|
||||
LiveOutMap Map;
|
||||
|
||||
/// LiveInBlock - Information about a basic block where a live range is known
|
||||
/// to be live-in, but the value has not yet been determined.
|
||||
@ -126,19 +112,27 @@ class LiveRangeCalc {
|
||||
///
|
||||
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
|
||||
bool findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
SlotIndex Kill, unsigned PhysReg,
|
||||
LiveOutData &LiveOuts);
|
||||
SlotIndex Kill, unsigned PhysReg);
|
||||
|
||||
/// updateSSA - Compute the values that will be live in to all requested
|
||||
/// blocks in LiveIn. Create PHI-def values as required to preserve SSA form.
|
||||
///
|
||||
/// Every live-in block must be jointly dominated by the added live-out
|
||||
/// blocks. No values are read from the live ranges.
|
||||
void updateSSA(LiveOutData &LiveOuts);
|
||||
void updateSSA();
|
||||
|
||||
/// Transfer information from the LiveIn vector to the live ranges and update
|
||||
/// the given @p LiveOuts.
|
||||
void updateFromLiveIns(LiveOutData &LiveOuts);
|
||||
void updateFromLiveIns();
|
||||
|
||||
/// Extend the live range of @p LR to reach all uses of Reg.
|
||||
///
|
||||
/// All uses must be jointly dominated by existing liveness. PHI-defs are
|
||||
/// inserted as needed to preserve SSA form.
|
||||
void extendToUses(LiveRange &LR, unsigned Reg, unsigned LaneMask);
|
||||
|
||||
/// Reset Map and Seen fields.
|
||||
void resetLiveOutMap();
|
||||
|
||||
public:
|
||||
LiveRangeCalc() : MF(nullptr), MRI(nullptr), Indexes(nullptr),
|
||||
@ -176,39 +170,25 @@ public:
|
||||
/// single existing value, Alloc may be null.
|
||||
///
|
||||
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
|
||||
void extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
|
||||
LiveOutData &LiveOuts);
|
||||
|
||||
void extend(LiveRange &LR, SlotIndex Kill) {
|
||||
extend(LR, Kill, 0, MainLiveOutData);
|
||||
}
|
||||
void extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg = 0);
|
||||
|
||||
/// createDeadDefs - Create a dead def in LI for every def operand of Reg.
|
||||
/// Each instruction defining Reg gets a new VNInfo with a corresponding
|
||||
/// minimal live range.
|
||||
void createDeadDefs(LiveRange &LR, unsigned Reg);
|
||||
|
||||
/// Subregister aware version of createDeadDefs(LiveRange &LR, unsigned Reg).
|
||||
/// If subregister liveness tracking is enabled new subranges are created as
|
||||
/// necessary when subregister defs are found. As with
|
||||
/// createDeadDefs(LiveRange &LR, unsigned Reg) new short live segments are
|
||||
/// created for every def of LI.reg. The new segments start and end at the
|
||||
/// defining instruction (hence the name "DeadDef").
|
||||
void createDeadDefs(LiveInterval &LI);
|
||||
|
||||
/// extendToUses - Extend the live range of LI to reach all uses of Reg.
|
||||
/// Extend the live range of @p LR to reach all uses of Reg.
|
||||
///
|
||||
/// All uses must be jointly dominated by existing liveness. PHI-defs are
|
||||
/// inserted as needed to preserve SSA form.
|
||||
void extendToUses(LiveRange &LR, unsigned Reg);
|
||||
void extendToUses(LiveRange &LR, unsigned PhysReg) {
|
||||
extendToUses(LR, PhysReg, ~0u);
|
||||
}
|
||||
|
||||
/// Subregister aware version of extendToUses(LiveRange &LR, unsigned Reg).
|
||||
/// If subregister liveness tracking is enabled new subranges are created
|
||||
/// as necessary when subregister uses are found. As with
|
||||
/// extendToUses(LiveRange &LR, unsigned Reg) the segments existing at the
|
||||
/// defs are extend until they reach all uses. New value numbers are created
|
||||
/// at CFG joins as necessary (SSA construction).
|
||||
void extendToUses(LiveInterval &LI);
|
||||
/// Calculates liveness for the register specified in live interval @p LI.
|
||||
/// Creates subregister live ranges as needed if subreg liveness tracking is
|
||||
/// enabled.
|
||||
void calculate(LiveInterval &LI);
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Low-level interface.
|
||||
@ -230,7 +210,8 @@ public:
|
||||
/// VNI may be null only if MBB is a live-through block also passed to
|
||||
/// addLiveInBlock().
|
||||
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
|
||||
MainLiveOutData.setLiveOutValue(MBB, VNI);
|
||||
Seen.set(MBB->getNumber());
|
||||
Map[MBB] = LiveOutPair(VNI, nullptr);
|
||||
}
|
||||
|
||||
/// addLiveInBlock - Add a block with an unknown live-in value. This
|
||||
@ -255,11 +236,7 @@ public:
|
||||
///
|
||||
/// Every predecessor of a live-in block must have been given a value with
|
||||
/// setLiveOutValue, the value may be null for live-trough blocks.
|
||||
void calculateValues(LiveOutData &LiveOuts);
|
||||
|
||||
void calculateValues() {
|
||||
calculateValues(MainLiveOutData);
|
||||
}
|
||||
void calculateValues();
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
Loading…
x
Reference in New Issue
Block a user