mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
blockfreq: Defer to BranchProbability::scale()
`BlockMass` can now defer to `BranchProbability::scale()`. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207547 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
81566c52fd
commit
6919443535
@ -758,31 +758,10 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Multiply by a branch probability.
|
||||
///
|
||||
/// Multiply by P. Guarantees full precision.
|
||||
///
|
||||
/// This could be naively implemented by multiplying by the numerator and
|
||||
/// dividing by the denominator, but in what order? Multiplying first can
|
||||
/// overflow, while dividing first will lose precision (potentially, changing
|
||||
/// a non-zero mass to zero).
|
||||
///
|
||||
/// The implementation mixes the two methods. Since \a BranchProbability
|
||||
/// uses 32-bits and \a BlockMass 64-bits, shift the mass as far to the left
|
||||
/// as there is room, then divide by the denominator to get a quotient.
|
||||
/// Multiplying by the numerator and right shifting gives a first
|
||||
/// approximation.
|
||||
///
|
||||
/// Calculate the error in this first approximation by calculating the
|
||||
/// opposite mass (multiply by the opposite numerator and shift) and
|
||||
/// subtracting both from teh original mass.
|
||||
///
|
||||
/// Add to the first approximation the correct fraction of this error value.
|
||||
/// This time, multiply first and then divide, since there is no danger of
|
||||
/// overflow.
|
||||
///
|
||||
/// \pre P represents a fraction between 0.0 and 1.0.
|
||||
BlockMass &operator*=(const BranchProbability &P);
|
||||
BlockMass &operator*=(const BranchProbability &P) {
|
||||
Mass = P.scale(Mass);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
|
||||
bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
|
||||
|
@ -311,32 +311,6 @@ std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
|
||||
// BlockMass implementation.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
BlockMass &BlockMass::operator*=(const BranchProbability &P) {
|
||||
uint32_t N = P.getNumerator(), D = P.getDenominator();
|
||||
assert(D && "divide by 0");
|
||||
assert(N <= D && "fraction greater than 1");
|
||||
|
||||
// Fast path for multiplying by 1.0.
|
||||
if (!Mass || N == D)
|
||||
return *this;
|
||||
|
||||
// Get as much precision as we can.
|
||||
int Shift = countLeadingZeros(Mass);
|
||||
uint64_t ShiftedQuotient = (Mass << Shift) / D;
|
||||
uint64_t Product = ShiftedQuotient * N >> Shift;
|
||||
|
||||
// Now check for what's lost.
|
||||
uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
|
||||
uint64_t Lost = Mass - Product - Left;
|
||||
|
||||
// TODO: prove this assertion.
|
||||
assert(Lost <= UINT32_MAX);
|
||||
|
||||
// Take the product plus a portion of the spoils.
|
||||
Mass = Product + Lost * N / D;
|
||||
return *this;
|
||||
}
|
||||
|
||||
UnsignedFloat<uint64_t> BlockMass::toFloat() const {
|
||||
if (isFull())
|
||||
return UnsignedFloat<uint64_t>(1, 0);
|
||||
|
Loading…
x
Reference in New Issue
Block a user