[SystemZ] Fix handling of 64-bit memcmp results

Generalize r188163 to cope with return types other than MVT::i32, just
as the existing visitMemCmpCall code did.  I've split this out into a
subroutine so that it can be used for other upcoming patches.

I also noticed that I'd used the wrong API to record the out chain.
It's a load that uses DAG.getRoot() rather than getRoot(), so the out
chain should go on PendingLoads.  I don't have a testcase for that because
we don't do any interesting scheduling on z yet.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188540 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Sandiford 2013-08-16 10:55:47 +00:00
parent 6c51f89498
commit 6a079fef4f
5 changed files with 174 additions and 20 deletions

View File

@ -5448,6 +5448,18 @@ static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
return LoadVal; return LoadVal;
} }
/// processIntegerCallValue - Record the value for an instruction that
/// produces an integer result, converting the type where necessary.
void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
SDValue Value,
bool IsSigned) {
EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
if (IsSigned)
Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
else
Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
setValue(&I, Value);
}
/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
/// If so, return true and lower it, otherwise return false and it will be /// If so, return true and lower it, otherwise return false and it will be
@ -5463,35 +5475,33 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
!I.getType()->isIntegerTy()) !I.getType()->isIntegerTy())
return false; return false;
const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); const Value *Size = I.getArgOperand(2);
if (Size && Size->getZExtValue() == 0) { const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
if (CSize && CSize->getZExtValue() == 0) {
EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
setValue(&I, DAG.getConstant(0, CallVT)); setValue(&I, DAG.getConstant(0, CallVT));
return true; return true;
} }
const Value *Arg0 = I.getArgOperand(0);
const Value *Arg1 = I.getArgOperand(1);
const Value *Arg2 = I.getArgOperand(2);
const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
std::pair<SDValue, SDValue> Res = std::pair<SDValue, SDValue> Res =
TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
getValue(Arg0), getValue(Arg1), getValue(Arg2), getValue(LHS), getValue(RHS), getValue(Size),
MachinePointerInfo(Arg0), MachinePointerInfo(LHS),
MachinePointerInfo(Arg1)); MachinePointerInfo(RHS));
if (Res.first.getNode()) { if (Res.first.getNode()) {
setValue(&I, Res.first); processIntegerCallValue(I, Res.first, true);
DAG.setRoot(Res.second); PendingLoads.push_back(Res.second);
return true; return true;
} }
// memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
// memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
bool ActuallyDoIt = true; bool ActuallyDoIt = true;
MVT LoadVT; MVT LoadVT;
Type *LoadTy; Type *LoadTy;
switch (Size->getZExtValue()) { switch (CSize->getZExtValue()) {
default: default:
LoadVT = MVT::Other; LoadVT = MVT::Other;
LoadTy = 0; LoadTy = 0;
@ -5499,20 +5509,20 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
break; break;
case 2: case 2:
LoadVT = MVT::i16; LoadVT = MVT::i16;
LoadTy = Type::getInt16Ty(Size->getContext()); LoadTy = Type::getInt16Ty(CSize->getContext());
break; break;
case 4: case 4:
LoadVT = MVT::i32; LoadVT = MVT::i32;
LoadTy = Type::getInt32Ty(Size->getContext()); LoadTy = Type::getInt32Ty(CSize->getContext());
break; break;
case 8: case 8:
LoadVT = MVT::i64; LoadVT = MVT::i64;
LoadTy = Type::getInt64Ty(Size->getContext()); LoadTy = Type::getInt64Ty(CSize->getContext());
break; break;
/* /*
case 16: case 16:
LoadVT = MVT::v4i32; LoadVT = MVT::v4i32;
LoadTy = Type::getInt32Ty(Size->getContext()); LoadTy = Type::getInt32Ty(CSize->getContext());
LoadTy = VectorType::get(LoadTy, 4); LoadTy = VectorType::get(LoadTy, 4);
break; break;
*/ */
@ -5526,7 +5536,7 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
// supports unaligned loads of that type. Expanding into byte loads would // supports unaligned loads of that type. Expanding into byte loads would
// bloat the code. // bloat the code.
const TargetLowering *TLI = TM.getTargetLowering(); const TargetLowering *TLI = TM.getTargetLowering();
if (ActuallyDoIt && Size->getZExtValue() > 4) { if (ActuallyDoIt && CSize->getZExtValue() > 4) {
// TODO: Handle 5 byte compare as 4-byte + 1 byte. // TODO: Handle 5 byte compare as 4-byte + 1 byte.
// TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
@ -5539,8 +5549,7 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
ISD::SETNE); ISD::SETNE);
EVT CallVT = TLI->getValueType(I.getType(), true); processIntegerCallValue(I, Res, false);
setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
return true; return true;
} }
} }

View File

@ -543,6 +543,9 @@ private:
llvm_unreachable("UserOp2 should not exist at instruction selection time!"); llvm_unreachable("UserOp2 should not exist at instruction selection time!");
} }
void processIntegerCallValue(const Instruction &I,
SDValue Value, bool IsSigned);
void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
/// EmitFuncArgumentDbgValue - If V is an function argument then create /// EmitFuncArgumentDbgValue - If V is an function argument then create

View File

@ -339,7 +339,12 @@ static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
const MachineRegisterInfo *MRI, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI) { const TargetRegisterInfo *TRI) {
MachineInstr *LGFR = 0;
MachineInstr *RLL = getDef(SrcReg, MRI); MachineInstr *RLL = getDef(SrcReg, MRI);
if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
LGFR = RLL;
RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
}
if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
return false; return false;
@ -362,6 +367,8 @@ static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
} }
Compare->eraseFromParent(); Compare->eraseFromParent();
if (LGFR)
eraseIfDead(LGFR, MRI);
eraseIfDead(RLL, MRI); eraseIfDead(RLL, MRI);
eraseIfDead(SRL, MRI); eraseIfDead(SRL, MRI);
eraseIfDead(IPM, MRI); eraseIfDead(IPM, MRI);

View File

@ -1,4 +1,4 @@
; Test memcmp using CLC. ; Test memcmp using CLC, with i32 results.
; ;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s

View File

@ -0,0 +1,135 @@
; Test memcmp using CLC, with i64 results.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
declare i64 @memcmp(i8 *%src1, i8 *%src2, i64 %size)
; Zero-length comparisons should be optimized away.
define i64 @f1(i8 *%src1, i8 *%src2) {
; CHECK-LABEL: f1:
; CHECK: lghi %r2, 0
; CHECK: br %r14
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 0)
ret i64 %res
}
; Check a case where the result is used as an integer.
define i64 @f2(i8 *%src1, i8 *%src2) {
; CHECK-LABEL: f2:
; CHECK: clc 0(2,%r2), 0(%r3)
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: srl [[REG]], 28
; CHECK: rll [[REG]], [[REG]], 31
; CHECK: lgfr %r2, [[REG]]
; CHECK: br %r14
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 2)
ret i64 %res
}
; Check a case where the result is tested for equality.
define void @f3(i8 *%src1, i8 *%src2, i64 *%dest) {
; CHECK-LABEL: f3:
; CHECK: clc 0(3,%r2), 0(%r3)
; CHECK-NEXT: je {{\..*}}
; CHECK: br %r14
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 3)
%cmp = icmp eq i64 %res, 0
br i1 %cmp, label %exit, label %store
store:
store i64 0, i64 *%dest
br label %exit
exit:
ret void
}
; Check a case where the result is tested for inequality.
define void @f4(i8 *%src1, i8 *%src2, i64 *%dest) {
; CHECK-LABEL: f4:
; CHECK: clc 0(4,%r2), 0(%r3)
; CHECK-NEXT: jlh {{\..*}}
; CHECK: br %r14
entry:
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 4)
%cmp = icmp ne i64 %res, 0
br i1 %cmp, label %exit, label %store
store:
store i64 0, i64 *%dest
br label %exit
exit:
ret void
}
; Check a case where the result is tested via slt.
define void @f5(i8 *%src1, i8 *%src2, i64 *%dest) {
; CHECK-LABEL: f5:
; CHECK: clc 0(5,%r2), 0(%r3)
; CHECK-NEXT: jl {{\..*}}
; CHECK: br %r14
entry:
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 5)
%cmp = icmp slt i64 %res, 0
br i1 %cmp, label %exit, label %store
store:
store i64 0, i64 *%dest
br label %exit
exit:
ret void
}
; Check a case where the result is tested for sgt.
define void @f6(i8 *%src1, i8 *%src2, i64 *%dest) {
; CHECK-LABEL: f6:
; CHECK: clc 0(6,%r2), 0(%r3)
; CHECK-NEXT: jh {{\..*}}
; CHECK: br %r14
entry:
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 6)
%cmp = icmp sgt i64 %res, 0
br i1 %cmp, label %exit, label %store
store:
store i64 0, i64 *%dest
br label %exit
exit:
ret void
}
; Check the upper end of the CLC range. Here the result is used both as
; an integer and for branching.
define i64 @f7(i8 *%src1, i8 *%src2, i64 *%dest) {
; CHECK-LABEL: f7:
; CHECK: clc 0(256,%r2), 0(%r3)
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: srl [[REG]], 28
; CHECK: rll [[REG]], [[REG]], 31
; CHECK: lgfr %r2, [[REG]]
; CHECK: jl {{.L*}}
; CHECK: br %r14
entry:
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 256)
%cmp = icmp slt i64 %res, 0
br i1 %cmp, label %exit, label %store
store:
store i64 0, i64 *%dest
br label %exit
exit:
ret i64 %res
}
; 257 bytes is too big for a single CLC. For now expect a call instead.
define i64 @f8(i8 *%src1, i8 *%src2) {
; CHECK-LABEL: f8:
; CHECK: brasl %r14, memcmp@PLT
; CHECK: br %r14
%res = call i64 @memcmp(i8 *%src1, i8 *%src2, i64 257)
ret i64 %res
}