R600: New control flow for SI v2

This patch replaces the control flow handling with a new
pass which structurize the graph before transforming it to
machine instruction. This has a couple of different advantages
and currently fixes 20 piglit tests without a single regression.

It is now a general purpose transformation that could be not
only be used for SI/R6xx, but also for other hardware
implementations that use a form of structurized control flow.

v2: further cleanup, fixes and documentation

Patch by: Christian König

Signed-off-by: Christian König <deathsimple@vodafone.de>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170591 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Tom Stellard
2012-12-19 22:10:31 +00:00
parent 6eebe47060
commit 6b7d99d473
14 changed files with 1500 additions and 385 deletions

View File

@@ -25,13 +25,14 @@ FunctionPass* createR600KernelParametersPass(const DataLayout *TD);
FunctionPass *createR600ExpandSpecialInstrsPass(TargetMachine &tm);
// SI Passes
FunctionPass *createSIAnnotateControlFlowPass();
FunctionPass *createSIAssignInterpRegsPass(TargetMachine &tm);
FunctionPass *createSILowerControlFlowPass(TargetMachine &tm);
FunctionPass *createSICodeEmitterPass(formatted_raw_ostream &OS);
FunctionPass *createSILowerLiteralConstantsPass(TargetMachine &tm);
FunctionPass *createSIFixSGPRLivenessPass(TargetMachine &tm);
// Passes common to R600 and SI
Pass *createAMDGPUStructurizeCFGPass();
FunctionPass *createAMDGPUConvertToISAPass(TargetMachine &tm);
} // End namespace llvm

View File

@@ -0,0 +1,732 @@
//===-- AMDGPUStructurizeCFG.cpp - ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The pass implemented in this file transforms the programs control flow
/// graph into a form that's suitable for code generation on hardware that
/// implements control flow by execution masking. This currently includes all
/// AMD GPUs but may as well be useful for other types of hardware.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/Module.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
namespace {
// Definition of the complex types used in this pass.
typedef std::pair<BasicBlock *, Value *> BBValuePair;
typedef ArrayRef<BasicBlock*> BBVecRef;
typedef SmallVector<RegionNode*, 8> RNVector;
typedef SmallVector<BasicBlock*, 8> BBVector;
typedef SmallVector<BBValuePair, 2> BBValueVector;
typedef DenseMap<PHINode *, BBValueVector> PhiMap;
typedef DenseMap<BasicBlock *, PhiMap> BBPhiMap;
typedef DenseMap<BasicBlock *, Value *> BBPredicates;
typedef DenseMap<BasicBlock *, BBPredicates> PredMap;
typedef DenseMap<BasicBlock *, unsigned> VisitedMap;
// The name for newly created blocks.
static const char *FlowBlockName = "Flow";
/// @brief Transforms the control flow graph on one single entry/exit region
/// at a time.
///
/// After the transform all "If"/"Then"/"Else" style control flow looks like
/// this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 |
/// | /
/// |/
/// 3
/// || Where:
/// | | 1 = "If" block, calculates the condition
/// 4 | 2 = "Then" subregion, runs if the condition is true
/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
/// |/ 4 = "Else" optional subregion, runs if the condition is false
/// 5 5 = "End" block, also rejoins the control flow
/// \endverbatim
///
/// Control flow is expressed as a branch where the true exit goes into the
/// "Then"/"Else" region, while the false exit skips the region
/// The condition for the optional "Else" region is expressed as a PHI node.
/// The incomming values of the PHI node are true for the "If" edge and false
/// for the "Then" edge.
///
/// Additionally to that even complicated loops look like this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 ^ Where:
/// | / 1 = "Entry" block
/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
/// 3 3 = "Flow" block, with back edge to entry block
/// |
/// \endverbatim
///
/// The back edge of the "Flow" block is always on the false side of the branch
/// while the true side continues the general flow. So the loop condition
/// consist of a network of PHI nodes where the true incoming values expresses
/// breaks and the false values expresses continue states.
class AMDGPUStructurizeCFG : public RegionPass {
static char ID;
Type *Boolean;
ConstantInt *BoolTrue;
ConstantInt *BoolFalse;
UndefValue *BoolUndef;
Function *Func;
Region *ParentRegion;
DominatorTree *DT;
RNVector Order;
VisitedMap Visited;
PredMap Predicates;
BBPhiMap DeletedPhis;
BBVector FlowsInserted;
BasicBlock *LoopStart;
BasicBlock *LoopEnd;
BBPredicates LoopPred;
void orderNodes();
void buildPredicate(BranchInst *Term, unsigned Idx,
BBPredicates &Pred, bool Invert);
void analyzeBlock(BasicBlock *BB);
void analyzeLoop(BasicBlock *BB, unsigned &LoopIdx);
void collectInfos();
bool dominatesPredicates(BasicBlock *A, BasicBlock *B);
void killTerminator(BasicBlock *BB);
RegionNode *skipChained(RegionNode *Node);
void delPhiValues(BasicBlock *From, BasicBlock *To);
void addPhiValues(BasicBlock *From, BasicBlock *To);
BasicBlock *getNextFlow(BasicBlock *Prev);
bool isPredictableTrue(BasicBlock *Prev, BasicBlock *Node);
BasicBlock *wireFlowBlock(BasicBlock *Prev, RegionNode *Node);
void createFlow();
void insertConditions();
void rebuildSSA();
public:
AMDGPUStructurizeCFG():
RegionPass(ID) {
initializeRegionInfoPass(*PassRegistry::getPassRegistry());
}
virtual bool doInitialization(Region *R, RGPassManager &RGM);
virtual bool runOnRegion(Region *R, RGPassManager &RGM);
virtual const char *getPassName() const {
return "AMDGPU simplify control flow";
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addPreserved<DominatorTree>();
RegionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char AMDGPUStructurizeCFG::ID = 0;
/// \brief Initialize the types and constants used in the pass
bool AMDGPUStructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
LLVMContext &Context = R->getEntry()->getContext();
Boolean = Type::getInt1Ty(Context);
BoolTrue = ConstantInt::getTrue(Context);
BoolFalse = ConstantInt::getFalse(Context);
BoolUndef = UndefValue::get(Boolean);
return false;
}
/// \brief Build up the general order of nodes
void AMDGPUStructurizeCFG::orderNodes() {
scc_iterator<Region *> I = scc_begin(ParentRegion),
E = scc_end(ParentRegion);
for (Order.clear(); I != E; ++I) {
std::vector<RegionNode *> &Nodes = *I;
Order.append(Nodes.begin(), Nodes.end());
}
}
/// \brief Build blocks and loop predicates
void AMDGPUStructurizeCFG::buildPredicate(BranchInst *Term, unsigned Idx,
BBPredicates &Pred, bool Invert) {
Value *True = Invert ? BoolFalse : BoolTrue;
Value *False = Invert ? BoolTrue : BoolFalse;
RegionInfo *RI = ParentRegion->getRegionInfo();
BasicBlock *BB = Term->getParent();
// Handle the case where multiple regions start at the same block
Region *R = BB != ParentRegion->getEntry() ?
RI->getRegionFor(BB) : ParentRegion;
if (R == ParentRegion) {
// It's a top level block in our region
Value *Cond = True;
if (Term->isConditional()) {
BasicBlock *Other = Term->getSuccessor(!Idx);
if (Visited.count(Other)) {
if (!Pred.count(Other))
Pred[Other] = False;
if (!Pred.count(BB))
Pred[BB] = True;
return;
}
Cond = Term->getCondition();
if (Idx != Invert)
Cond = BinaryOperator::CreateNot(Cond, "", Term);
}
Pred[BB] = Cond;
} else if (ParentRegion->contains(R)) {
// It's a block in a sub region
while(R->getParent() != ParentRegion)
R = R->getParent();
Pred[R->getEntry()] = True;
} else {
// It's a branch from outside into our parent region
Pred[BB] = True;
}
}
/// \brief Analyze the successors of each block and build up predicates
void AMDGPUStructurizeCFG::analyzeBlock(BasicBlock *BB) {
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
BBPredicates &Pred = Predicates[BB];
for (; PI != PE; ++PI) {
BranchInst *Term = cast<BranchInst>((*PI)->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
if (Succ != BB)
continue;
buildPredicate(Term, i, Pred, false);
}
}
}
/// \brief Analyze the conditions leading to loop to a previous block
void AMDGPUStructurizeCFG::analyzeLoop(BasicBlock *BB, unsigned &LoopIdx) {
BranchInst *Term = cast<BranchInst>(BB->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
// Ignore it if it's not a back edge
if (!Visited.count(Succ))
continue;
buildPredicate(Term, i, LoopPred, true);
LoopEnd = BB;
if (Visited[Succ] < LoopIdx) {
LoopIdx = Visited[Succ];
LoopStart = Succ;
}
}
}
/// \brief Collect various loop and predicate infos
void AMDGPUStructurizeCFG::collectInfos() {
unsigned Number = 0, LoopIdx = ~0;
// Reset predicate
Predicates.clear();
// and loop infos
LoopStart = LoopEnd = 0;
LoopPred.clear();
RNVector::reverse_iterator OI = Order.rbegin(), OE = Order.rend();
for (Visited.clear(); OI != OE; Visited[(*OI++)->getEntry()] = ++Number) {
// Analyze all the conditions leading to a node
analyzeBlock((*OI)->getEntry());
if ((*OI)->isSubRegion())
continue;
// Find the first/last loop nodes and loop predicates
analyzeLoop((*OI)->getNodeAs<BasicBlock>(), LoopIdx);
}
}
/// \brief Does A dominate all the predicates of B ?
bool AMDGPUStructurizeCFG::dominatesPredicates(BasicBlock *A, BasicBlock *B) {
BBPredicates &Preds = Predicates[B];
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
if (!DT->dominates(A, PI->first))
return false;
}
return true;
}
/// \brief Remove phi values from all successors and the remove the terminator.
void AMDGPUStructurizeCFG::killTerminator(BasicBlock *BB) {
TerminatorInst *Term = BB->getTerminator();
if (!Term)
return;
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
delPhiValues(BB, *SI);
}
Term->eraseFromParent();
}
/// First: Skip forward to the first region node that either isn't a subregion or not
/// dominating it's exit, remove all the skipped nodes from the node order.
///
/// Second: Handle the first successor directly if the resulting nodes successor
/// predicates are still dominated by the original entry
RegionNode *AMDGPUStructurizeCFG::skipChained(RegionNode *Node) {
BasicBlock *Entry = Node->getEntry();
// Skip forward as long as it is just a linear flow
while (true) {
BasicBlock *Entry = Node->getEntry();
BasicBlock *Exit;
if (Node->isSubRegion()) {
Exit = Node->getNodeAs<Region>()->getExit();
} else {
TerminatorInst *Term = Entry->getTerminator();
if (Term->getNumSuccessors() != 1)
break;
Exit = Term->getSuccessor(0);
}
// It's a back edge, break here so we can insert a loop node
if (!Visited.count(Exit))
return Node;
// More than node edges are pointing to exit
if (!DT->dominates(Entry, Exit))
return Node;
RegionNode *Next = ParentRegion->getNode(Exit);
RNVector::iterator I = std::find(Order.begin(), Order.end(), Next);
assert(I != Order.end());
Visited.erase(Next->getEntry());
Order.erase(I);
Node = Next;
}
BasicBlock *BB = Node->getEntry();
TerminatorInst *Term = BB->getTerminator();
if (Term->getNumSuccessors() != 2)
return Node;
// Our node has exactly two succesors, check if we can handle
// any of them directly
BasicBlock *Succ = Term->getSuccessor(0);
if (!Visited.count(Succ) || !dominatesPredicates(Entry, Succ)) {
Succ = Term->getSuccessor(1);
if (!Visited.count(Succ) || !dominatesPredicates(Entry, Succ))
return Node;
} else {
BasicBlock *Succ2 = Term->getSuccessor(1);
if (Visited.count(Succ2) && Visited[Succ] > Visited[Succ2] &&
dominatesPredicates(Entry, Succ2))
Succ = Succ2;
}
RegionNode *Next = ParentRegion->getNode(Succ);
RNVector::iterator E = Order.end();
RNVector::iterator I = std::find(Order.begin(), E, Next);
assert(I != E);
killTerminator(BB);
FlowsInserted.push_back(BB);
Visited.erase(Succ);
Order.erase(I);
return ParentRegion->getNode(wireFlowBlock(BB, Next));
}
/// \brief Remove all PHI values coming from "From" into "To" and remember
/// them in DeletedPhis
void AMDGPUStructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
PhiMap &Map = DeletedPhis[To];
for (BasicBlock::iterator I = To->begin(), E = To->end();
I != E && isa<PHINode>(*I);) {
PHINode &Phi = cast<PHINode>(*I++);
while (Phi.getBasicBlockIndex(From) != -1) {
Value *Deleted = Phi.removeIncomingValue(From, false);
Map[&Phi].push_back(std::make_pair(From, Deleted));
}
}
}
/// \brief Add the PHI values back once we knew the new predecessor
void AMDGPUStructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
if (!DeletedPhis.count(To))
return;
PhiMap &Map = DeletedPhis[To];
SSAUpdater Updater;
for (PhiMap::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
PHINode *Phi = I->first;
Updater.Initialize(Phi->getType(), "");
BasicBlock *Fallback = To;
bool HaveFallback = false;
for (BBValueVector::iterator VI = I->second.begin(), VE = I->second.end();
VI != VE; ++VI) {
Updater.AddAvailableValue(VI->first, VI->second);
BasicBlock *Dom = DT->findNearestCommonDominator(Fallback, VI->first);
if (Dom == VI->first)
HaveFallback = true;
else if (Dom != Fallback)
HaveFallback = false;
Fallback = Dom;
}
if (!HaveFallback) {
Value *Undef = UndefValue::get(Phi->getType());
Updater.AddAvailableValue(Fallback, Undef);
}
Phi->addIncoming(Updater.GetValueAtEndOfBlock(From), From);
}
DeletedPhis.erase(To);
}
/// \brief Create a new flow node and update dominator tree and region info
BasicBlock *AMDGPUStructurizeCFG::getNextFlow(BasicBlock *Prev) {
LLVMContext &Context = Func->getContext();
BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
Order.back()->getEntry();
BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
Func, Insert);
DT->addNewBlock(Flow, Prev);
ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
FlowsInserted.push_back(Flow);
return Flow;
}
/// \brief Can we predict that this node will always be called?
bool AMDGPUStructurizeCFG::isPredictableTrue(BasicBlock *Prev,
BasicBlock *Node) {
BBPredicates &Preds = Predicates[Node];
bool Dominated = false;
for (BBPredicates::iterator I = Preds.begin(), E = Preds.end();
I != E; ++I) {
if (I->second != BoolTrue)
return false;
if (!Dominated && DT->dominates(I->first, Prev))
Dominated = true;
}
return Dominated;
}
/// \brief Wire up the new control flow by inserting or updating the branch
/// instructions at node exits
BasicBlock *AMDGPUStructurizeCFG::wireFlowBlock(BasicBlock *Prev,
RegionNode *Node) {
BasicBlock *Entry = Node->getEntry();
if (LoopStart == Entry) {
LoopStart = Prev;
LoopPred[Prev] = BoolTrue;
}
// Wire it up temporary, skipChained may recurse into us
BranchInst::Create(Entry, Prev);
DT->changeImmediateDominator(Entry, Prev);
addPhiValues(Prev, Entry);
Node = skipChained(Node);
BasicBlock *Next = getNextFlow(Prev);
if (!isPredictableTrue(Prev, Entry)) {
// Let Prev point to entry and next block
Prev->getTerminator()->eraseFromParent();
BranchInst::Create(Entry, Next, BoolUndef, Prev);
} else {
DT->changeImmediateDominator(Next, Entry);
}
// Let node exit(s) point to next block
if (Node->isSubRegion()) {
Region *SubRegion = Node->getNodeAs<Region>();
BasicBlock *Exit = SubRegion->getExit();
// Find all the edges from the sub region to the exit
BBVector ToDo;
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
if (SubRegion->contains(*I))
ToDo.push_back(*I);
}
// Modify the edges to point to the new flow block
for (BBVector::iterator I = ToDo.begin(), E = ToDo.end(); I != E; ++I) {
delPhiValues(*I, Exit);
TerminatorInst *Term = (*I)->getTerminator();
Term->replaceUsesOfWith(Exit, Next);
}
// Update the region info
SubRegion->replaceExit(Next);
} else {
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
killTerminator(BB);
BranchInst::Create(Next, BB);
if (BB == LoopEnd)
LoopEnd = 0;
}
return Next;
}
/// Destroy node order and visited map, build up flow order instead.
/// After this function control flow looks like it should be, but
/// branches only have undefined conditions.
void AMDGPUStructurizeCFG::createFlow() {
DeletedPhis.clear();
BasicBlock *Prev = Order.pop_back_val()->getEntry();
assert(Prev == ParentRegion->getEntry() && "Incorrect node order!");
Visited.erase(Prev);
if (LoopStart == Prev) {
// Loop starts at entry, split entry so that we can predicate it
BasicBlock::iterator Insert = Prev->getFirstInsertionPt();
BasicBlock *Split = Prev->splitBasicBlock(Insert, FlowBlockName);
DT->addNewBlock(Split, Prev);
ParentRegion->getRegionInfo()->setRegionFor(Split, ParentRegion);
Predicates[Split] = Predicates[Prev];
Order.push_back(ParentRegion->getBBNode(Split));
LoopPred[Prev] = BoolTrue;
} else if (LoopStart == Order.back()->getEntry()) {
// Loop starts behind entry, split entry so that we can jump to it
Instruction *Term = Prev->getTerminator();
BasicBlock *Split = Prev->splitBasicBlock(Term, FlowBlockName);
DT->addNewBlock(Split, Prev);
ParentRegion->getRegionInfo()->setRegionFor(Split, ParentRegion);
Prev = Split;
}
killTerminator(Prev);
FlowsInserted.clear();
FlowsInserted.push_back(Prev);
while (!Order.empty()) {
RegionNode *Node = Order.pop_back_val();
Visited.erase(Node->getEntry());
Prev = wireFlowBlock(Prev, Node);
if (LoopStart && !LoopEnd) {
// Create an extra loop end node
LoopEnd = Prev;
Prev = getNextFlow(LoopEnd);
BranchInst::Create(Prev, LoopStart, BoolUndef, LoopEnd);
addPhiValues(LoopEnd, LoopStart);
}
}
BasicBlock *Exit = ParentRegion->getExit();
BranchInst::Create(Exit, Prev);
addPhiValues(Prev, Exit);
if (DT->dominates(ParentRegion->getEntry(), Exit))
DT->changeImmediateDominator(Exit, Prev);
if (LoopStart && LoopEnd) {
BBVector::iterator FI = std::find(FlowsInserted.begin(),
FlowsInserted.end(),
LoopStart);
for (; *FI != LoopEnd; ++FI) {
addPhiValues(*FI, (*FI)->getTerminator()->getSuccessor(0));
}
}
assert(Order.empty());
assert(Visited.empty());
assert(DeletedPhis.empty());
}
/// \brief Insert the missing branch conditions
void AMDGPUStructurizeCFG::insertConditions() {
SSAUpdater PhiInserter;
for (BBVector::iterator FI = FlowsInserted.begin(), FE = FlowsInserted.end();
FI != FE; ++FI) {
BranchInst *Term = cast<BranchInst>((*FI)->getTerminator());
if (Term->isUnconditional())
continue;
PhiInserter.Initialize(Boolean, "");
PhiInserter.AddAvailableValue(&Func->getEntryBlock(), BoolFalse);
BasicBlock *Succ = Term->getSuccessor(0);
BBPredicates &Preds = (*FI == LoopEnd) ? LoopPred : Predicates[Succ];
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
PhiInserter.AddAvailableValue(PI->first, PI->second);
}
Term->setCondition(PhiInserter.GetValueAtEndOfBlock(*FI));
}
}
/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really nessasary
void AMDGPUStructurizeCFG::rebuildSSA() {
SSAUpdater Updater;
for (Region::block_iterator I = ParentRegion->block_begin(),
E = ParentRegion->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
bool Initialized = false;
for (Use *I = &II->use_begin().getUse(), *Next; I; I = Next) {
Next = I->getNext();
Instruction *User = cast<Instruction>(I->getUser());
if (User->getParent() == BB) {
continue;
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(*I) == BB)
continue;
}
if (DT->dominates(II, User))
continue;
if (!Initialized) {
Value *Undef = UndefValue::get(II->getType());
Updater.Initialize(II->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(BB, II);
Initialized = true;
}
Updater.RewriteUseAfterInsertions(*I);
}
}
}
}
/// \brief Run the transformation for each region found
bool AMDGPUStructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
if (R->isTopLevelRegion())
return false;
Func = R->getEntry()->getParent();
ParentRegion = R;
DT = &getAnalysis<DominatorTree>();
orderNodes();
collectInfos();
createFlow();
insertConditions();
rebuildSSA();
Order.clear();
Visited.clear();
Predicates.clear();
DeletedPhis.clear();
FlowsInserted.clear();
return true;
}
/// \brief Create the pass
Pass *llvm::createAMDGPUStructurizeCFGPass() {
return new AMDGPUStructurizeCFG();
}

View File

@@ -91,6 +91,11 @@ TargetPassConfig *AMDGPUTargetMachine::createPassConfig(PassManagerBase &PM) {
bool
AMDGPUPassConfig::addPreISel() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) {
addPass(createAMDGPUStructurizeCFGPass());
addPass(createSIAnnotateControlFlowPass());
}
return false;
}
@@ -107,9 +112,6 @@ bool AMDGPUPassConfig::addPreRegAlloc() {
addPass(createSIAssignInterpRegsPass(*TM));
}
addPass(createAMDGPUConvertToISAPass(*TM));
if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) {
addPass(createSIFixSGPRLivenessPass(*TM));
}
return false;
}
@@ -124,11 +126,10 @@ bool AMDGPUPassConfig::addPreSched2() {
}
bool AMDGPUPassConfig::addPreEmitPass() {
addPass(createAMDGPUCFGPreparationPass(*TM));
addPass(createAMDGPUCFGStructurizerPass(*TM));
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) {
addPass(createAMDGPUCFGPreparationPass(*TM));
addPass(createAMDGPUCFGStructurizerPass(*TM));
addPass(createR600ExpandSpecialInstrsPass(*TM));
addPass(&FinalizeMachineBundlesID);
} else {

View File

@@ -2596,7 +2596,6 @@ struct CFGStructTraits<AMDGPUCFGStructurizer> {
case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALNZ_f32;
case AMDGPU::SI_IF_NZ: return AMDGPU::SI_IF_NZ;
default:
assert(0 && "internal error");
}
@@ -2608,7 +2607,6 @@ struct CFGStructTraits<AMDGPUCFGStructurizer> {
case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALZ_f32;
case AMDGPU::SI_IF_Z: return AMDGPU::SI_IF_Z;
default:
assert(0 && "internal error");
}
@@ -2658,8 +2656,6 @@ struct CFGStructTraits<AMDGPUCFGStructurizer> {
return instr->getOperand(instr->findFirstPredOperandIdx()).getReg() != 0;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32:
case AMDGPU::SI_IF_NZ:
case AMDGPU::SI_IF_Z:
break;
default:
return false;

View File

@@ -206,68 +206,3 @@ multiclass BranchInstr2<string name> {
// Intrinsics support
//===--------------------------------------------------------------------===//
include "AMDILIntrinsics.td"
//===--------------------------------------------------------------------===//
// Instructions support
//===--------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Custom Inserter for Branches and returns, this eventually will be a
// seperate pass
//===---------------------------------------------------------------------===//
let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
def BRANCH : ILFormat<(outs), (ins brtarget:$target),
"; Pseudo unconditional branch instruction",
[(br bb:$target)]>;
defm BRANCH_COND : BranchConditional<IL_brcond>;
}
//===---------------------------------------------------------------------===//
// Flow and Program control Instructions
//===---------------------------------------------------------------------===//
let isTerminator=1 in {
def SWITCH : ILFormat< (outs), (ins GPRI32:$src),
!strconcat("SWITCH", " $src"), []>;
def CASE : ILFormat< (outs), (ins GPRI32:$src),
!strconcat("CASE", " $src"), []>;
def BREAK : ILFormat< (outs), (ins),
"BREAK", []>;
def CONTINUE : ILFormat< (outs), (ins),
"CONTINUE", []>;
def DEFAULT : ILFormat< (outs), (ins),
"DEFAULT", []>;
def ELSE : ILFormat< (outs), (ins),
"ELSE", []>;
def ENDSWITCH : ILFormat< (outs), (ins),
"ENDSWITCH", []>;
def ENDMAIN : ILFormat< (outs), (ins),
"ENDMAIN", []>;
def END : ILFormat< (outs), (ins),
"END", []>;
def ENDFUNC : ILFormat< (outs), (ins),
"ENDFUNC", []>;
def ENDIF : ILFormat< (outs), (ins),
"ENDIF", []>;
def WHILELOOP : ILFormat< (outs), (ins),
"WHILE", []>;
def ENDLOOP : ILFormat< (outs), (ins),
"ENDLOOP", []>;
def FUNC : ILFormat< (outs), (ins),
"FUNC", []>;
def RETDYN : ILFormat< (outs), (ins),
"RET_DYN", []>;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
defm IFC : BranchInstr2<"IFC">;
defm BREAKC : BranchInstr2<"BREAKC">;
defm CONTINUEC : BranchInstr2<"CONTINUEC">;
}

View File

@@ -27,6 +27,7 @@ add_llvm_target(R600CodeGen
AMDGPUAsmPrinter.cpp
AMDGPUMCInstLower.cpp
AMDGPUSubtarget.cpp
AMDGPUStructurizeCFG.cpp
AMDGPUTargetMachine.cpp
AMDGPUISelLowering.cpp
AMDGPUConvertToISA.cpp
@@ -37,6 +38,7 @@ add_llvm_target(R600CodeGen
R600ISelLowering.cpp
R600MachineFunctionInfo.cpp
R600RegisterInfo.cpp
SIAnnotateControlFlow.cpp
SIAssignInterpRegs.cpp
SIInstrInfo.cpp
SIISelLowering.cpp
@@ -44,7 +46,6 @@ add_llvm_target(R600CodeGen
SILowerControlFlow.cpp
SIMachineFunctionInfo.cpp
SIRegisterInfo.cpp
SIFixSGPRLiveness.cpp
)
add_dependencies(LLVMR600CodeGen intrinsics_gen)

View File

@@ -1545,6 +1545,71 @@ let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in {
"RETURN", [(IL_retflag)]>;
}
//===--------------------------------------------------------------------===//
// Instructions support
//===--------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Custom Inserter for Branches and returns, this eventually will be a
// seperate pass
//===---------------------------------------------------------------------===//
let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
def BRANCH : ILFormat<(outs), (ins brtarget:$target),
"; Pseudo unconditional branch instruction",
[(br bb:$target)]>;
defm BRANCH_COND : BranchConditional<IL_brcond>;
}
//===---------------------------------------------------------------------===//
// Flow and Program control Instructions
//===---------------------------------------------------------------------===//
let isTerminator=1 in {
def SWITCH : ILFormat< (outs), (ins GPRI32:$src),
!strconcat("SWITCH", " $src"), []>;
def CASE : ILFormat< (outs), (ins GPRI32:$src),
!strconcat("CASE", " $src"), []>;
def BREAK : ILFormat< (outs), (ins),
"BREAK", []>;
def CONTINUE : ILFormat< (outs), (ins),
"CONTINUE", []>;
def DEFAULT : ILFormat< (outs), (ins),
"DEFAULT", []>;
def ELSE : ILFormat< (outs), (ins),
"ELSE", []>;
def ENDSWITCH : ILFormat< (outs), (ins),
"ENDSWITCH", []>;
def ENDMAIN : ILFormat< (outs), (ins),
"ENDMAIN", []>;
def END : ILFormat< (outs), (ins),
"END", []>;
def ENDFUNC : ILFormat< (outs), (ins),
"ENDFUNC", []>;
def ENDIF : ILFormat< (outs), (ins),
"ENDIF", []>;
def WHILELOOP : ILFormat< (outs), (ins),
"WHILE", []>;
def ENDLOOP : ILFormat< (outs), (ins),
"ENDLOOP", []>;
def FUNC : ILFormat< (outs), (ins),
"FUNC", []>;
def RETDYN : ILFormat< (outs), (ins),
"RET_DYN", []>;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
defm IFC : BranchInstr2<"IFC">;
defm BREAKC : BranchInstr2<"BREAKC">;
defm CONTINUEC : BranchInstr2<"CONTINUEC">;
}
//===----------------------------------------------------------------------===//
// ISel Patterns
//===----------------------------------------------------------------------===//

View File

@@ -0,0 +1,337 @@
//===-- SIAnnotateControlFlow.cpp - ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Annotates the control flow with hardware specific intrinsics.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
namespace {
// Complex types used in this pass
typedef std::pair<BasicBlock *, Value *> StackEntry;
typedef SmallVector<StackEntry, 16> StackVector;
// Intrinsic names the control flow is annotated with
static const char *IfIntrinsic = "llvm.SI.if";
static const char *ElseIntrinsic = "llvm.SI.else";
static const char *BreakIntrinsic = "llvm.SI.break";
static const char *IfBreakIntrinsic = "llvm.SI.if.break";
static const char *ElseBreakIntrinsic = "llvm.SI.else.break";
static const char *LoopIntrinsic = "llvm.SI.loop";
static const char *EndCfIntrinsic = "llvm.SI.end.cf";
class SIAnnotateControlFlow : public FunctionPass {
static char ID;
Type *Boolean;
Type *Void;
Type *Int64;
Type *ReturnStruct;
ConstantInt *BoolTrue;
ConstantInt *BoolFalse;
UndefValue *BoolUndef;
Constant *Int64Zero;
Constant *If;
Constant *Else;
Constant *Break;
Constant *IfBreak;
Constant *ElseBreak;
Constant *Loop;
Constant *EndCf;
DominatorTree *DT;
StackVector Stack;
SSAUpdater PhiInserter;
bool isTopOfStack(BasicBlock *BB);
Value *popSaved();
void push(BasicBlock *BB, Value *Saved);
bool isElse(PHINode *Phi);
void eraseIfUnused(PHINode *Phi);
void openIf(BranchInst *Term);
void insertElse(BranchInst *Term);
void handleLoopCondition(Value *Cond);
void handleLoop(BranchInst *Term);
void closeControlFlow(BasicBlock *BB);
public:
SIAnnotateControlFlow():
FunctionPass(ID) { }
virtual bool doInitialization(Module &M);
virtual bool runOnFunction(Function &F);
virtual const char *getPassName() const {
return "SI annotate control flow";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addPreserved<DominatorTree>();
FunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char SIAnnotateControlFlow::ID = 0;
/// \brief Initialize all the types and constants used in the pass
bool SIAnnotateControlFlow::doInitialization(Module &M) {
LLVMContext &Context = M.getContext();
Void = Type::getVoidTy(Context);
Boolean = Type::getInt1Ty(Context);
Int64 = Type::getInt64Ty(Context);
ReturnStruct = StructType::get(Boolean, Int64, (Type *)0);
BoolTrue = ConstantInt::getTrue(Context);
BoolFalse = ConstantInt::getFalse(Context);
BoolUndef = UndefValue::get(Boolean);
Int64Zero = ConstantInt::get(Int64, 0);
If = M.getOrInsertFunction(
IfIntrinsic, ReturnStruct, Boolean, (Type *)0);
Else = M.getOrInsertFunction(
ElseIntrinsic, ReturnStruct, Int64, (Type *)0);
Break = M.getOrInsertFunction(
BreakIntrinsic, Int64, Int64, (Type *)0);
IfBreak = M.getOrInsertFunction(
IfBreakIntrinsic, Int64, Boolean, Int64, (Type *)0);
ElseBreak = M.getOrInsertFunction(
ElseBreakIntrinsic, Int64, Int64, Int64, (Type *)0);
Loop = M.getOrInsertFunction(
LoopIntrinsic, Boolean, Int64, (Type *)0);
EndCf = M.getOrInsertFunction(
EndCfIntrinsic, Void, Int64, (Type *)0);
return false;
}
/// \brief Is BB the last block saved on the stack ?
bool SIAnnotateControlFlow::isTopOfStack(BasicBlock *BB) {
return Stack.back().first == BB;
}
/// \brief Pop the last saved value from the control flow stack
Value *SIAnnotateControlFlow::popSaved() {
return Stack.pop_back_val().second;
}
/// \brief Push a BB and saved value to the control flow stack
void SIAnnotateControlFlow::push(BasicBlock *BB, Value *Saved) {
Stack.push_back(std::make_pair(BB, Saved));
}
/// \brief Can the condition represented by this PHI node treated like
/// an "Else" block?
bool SIAnnotateControlFlow::isElse(PHINode *Phi) {
BasicBlock *IDom = DT->getNode(Phi->getParent())->getIDom()->getBlock();
for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
if (Phi->getIncomingBlock(i) == IDom) {
if (Phi->getIncomingValue(i) != BoolTrue)
return false;
} else {
if (Phi->getIncomingValue(i) != BoolFalse)
return false;
}
}
return true;
}
// \brief Erase "Phi" if it is not used any more
void SIAnnotateControlFlow::eraseIfUnused(PHINode *Phi) {
if (!Phi->hasNUsesOrMore(1))
Phi->eraseFromParent();
}
/// \brief Open a new "If" block
void SIAnnotateControlFlow::openIf(BranchInst *Term) {
Value *Ret = CallInst::Create(If, Term->getCondition(), "", Term);
Term->setCondition(ExtractValueInst::Create(Ret, 0, "", Term));
push(Term->getSuccessor(1), ExtractValueInst::Create(Ret, 1, "", Term));
}
/// \brief Close the last "If" block and open a new "Else" block
void SIAnnotateControlFlow::insertElse(BranchInst *Term) {
Value *Ret = CallInst::Create(Else, popSaved(), "", Term);
Term->setCondition(ExtractValueInst::Create(Ret, 0, "", Term));
push(Term->getSuccessor(1), ExtractValueInst::Create(Ret, 1, "", Term));
}
/// \brief Recursively handle the condition leading to a loop
void SIAnnotateControlFlow::handleLoopCondition(Value *Cond) {
if (PHINode *Phi = dyn_cast<PHINode>(Cond)) {
// Handle all non constant incoming values first
for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = Phi->getIncomingValue(i);
if (isa<ConstantInt>(Incoming))
continue;
Phi->setIncomingValue(i, BoolFalse);
handleLoopCondition(Incoming);
}
BasicBlock *Parent = Phi->getParent();
BasicBlock *IDom = DT->getNode(Parent)->getIDom()->getBlock();
for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = Phi->getIncomingValue(i);
if (Incoming != BoolTrue)
continue;
BasicBlock *From = Phi->getIncomingBlock(i);
if (From == IDom) {
CallInst *OldEnd = dyn_cast<CallInst>(Parent->getFirstInsertionPt());
if (OldEnd && OldEnd->getCalledFunction() == EndCf) {
Value *Args[] = {
OldEnd->getArgOperand(0),
PhiInserter.GetValueAtEndOfBlock(Parent)
};
Value *Ret = CallInst::Create(ElseBreak, Args, "", OldEnd);
PhiInserter.AddAvailableValue(Parent, Ret);
continue;
}
}
TerminatorInst *Insert = From->getTerminator();
Value *Arg = PhiInserter.GetValueAtEndOfBlock(From);
Value *Ret = CallInst::Create(Break, Arg, "", Insert);
PhiInserter.AddAvailableValue(From, Ret);
}
eraseIfUnused(Phi);
} else if (Instruction *Inst = dyn_cast<Instruction>(Cond)) {
BasicBlock *Parent = Inst->getParent();
TerminatorInst *Insert = Parent->getTerminator();
Value *Args[] = { Cond, PhiInserter.GetValueAtEndOfBlock(Parent) };
Value *Ret = CallInst::Create(IfBreak, Args, "", Insert);
PhiInserter.AddAvailableValue(Parent, Ret);
} else {
assert(0 && "Unhandled loop condition!");
}
}
/// \brief Handle a back edge (loop)
void SIAnnotateControlFlow::handleLoop(BranchInst *Term) {
BasicBlock *Target = Term->getSuccessor(1);
PHINode *Broken = PHINode::Create(Int64, 0, "", &Target->front());
PhiInserter.Initialize(Int64, "");
PhiInserter.AddAvailableValue(Target, Broken);
Value *Cond = Term->getCondition();
Term->setCondition(BoolTrue);
handleLoopCondition(Cond);
BasicBlock *BB = Term->getParent();
Value *Arg = PhiInserter.GetValueAtEndOfBlock(BB);
for (pred_iterator PI = pred_begin(Target), PE = pred_end(Target);
PI != PE; ++PI) {
Broken->addIncoming(*PI == BB ? Arg : Int64Zero, *PI);
}
Term->setCondition(CallInst::Create(Loop, Arg, "", Term));
push(Term->getSuccessor(0), Arg);
}
/// \brief Close the last opened control flow
void SIAnnotateControlFlow::closeControlFlow(BasicBlock *BB) {
CallInst::Create(EndCf, popSaved(), "", BB->getFirstInsertionPt());
}
/// \brief Annotate the control flow with intrinsics so the backend can
/// recognize if/then/else and loops.
bool SIAnnotateControlFlow::runOnFunction(Function &F) {
DT = &getAnalysis<DominatorTree>();
for (df_iterator<BasicBlock *> I = df_begin(&F.getEntryBlock()),
E = df_end(&F.getEntryBlock()); I != E; ++I) {
BranchInst *Term = dyn_cast<BranchInst>((*I)->getTerminator());
if (!Term || Term->isUnconditional()) {
if (isTopOfStack(*I))
closeControlFlow(*I);
continue;
}
if (I.nodeVisited(Term->getSuccessor(1))) {
if (isTopOfStack(*I))
closeControlFlow(*I);
handleLoop(Term);
continue;
}
if (isTopOfStack(*I)) {
PHINode *Phi = dyn_cast<PHINode>(Term->getCondition());
if (Phi && Phi->getParent() == *I && isElse(Phi)) {
insertElse(Term);
eraseIfUnused(Phi);
continue;
}
closeControlFlow(*I);
}
openIf(Term);
}
assert(Stack.empty());
return true;
}
/// \brief Create the annotation pass
FunctionPass *llvm::createSIAnnotateControlFlowPass() {
return new SIAnnotateControlFlow();
}

View File

@@ -1,179 +0,0 @@
//===-- SIFixSGPRLiveness.cpp - SGPR liveness adjustment ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// SGPRs are not affected by control flow. This pass adjusts SGPR liveness in
/// so that the register allocator can still correctly allocate them.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
using namespace llvm;
namespace {
class SIFixSGPRLiveness : public MachineFunctionPass {
private:
static char ID;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
MachineDominatorTree *MD;
MachinePostDominatorTree *MPD;
bool isSGPR(const TargetRegisterClass *RegClass) {
return RegClass == &AMDGPU::SReg_1RegClass ||
RegClass == &AMDGPU::SReg_32RegClass ||
RegClass == &AMDGPU::SReg_64RegClass ||
RegClass == &AMDGPU::SReg_128RegClass ||
RegClass == &AMDGPU::SReg_256RegClass;
}
void addKill(MachineBasicBlock::iterator I, unsigned Reg);
MachineBasicBlock *handleUses(unsigned VirtReg, MachineBasicBlock *Begin);
void handlePreds(MachineBasicBlock *Begin, MachineBasicBlock *End,
unsigned VirtReg);
bool handleVirtReg(unsigned VirtReg);
public:
SIFixSGPRLiveness(TargetMachine &tm);
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "SI fix SGPR liveness pass";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
};
} // end anonymous namespace
char SIFixSGPRLiveness::ID = 0;
SIFixSGPRLiveness::SIFixSGPRLiveness(TargetMachine &tm):
MachineFunctionPass(ID),
TII(tm.getInstrInfo()) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}
void SIFixSGPRLiveness::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
void SIFixSGPRLiveness::addKill(MachineBasicBlock::iterator I, unsigned Reg) {
MachineBasicBlock *MBB = I->getParent();
BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL)).addReg(Reg);
}
// Find the common post dominator of all uses
MachineBasicBlock *SIFixSGPRLiveness::handleUses(unsigned VirtReg,
MachineBasicBlock *Begin) {
MachineBasicBlock *LastUse = Begin, *End = Begin;
bool EndUsesReg = true;
MachineRegisterInfo::use_iterator i, e;
for (i = MRI->use_begin(VirtReg), e = MRI->use_end(); i != e; ++i) {
MachineBasicBlock *MBB = i->getParent();
if (LastUse == MBB)
continue;
LastUse = MBB;
MBB = MPD->findNearestCommonDominator(End, MBB);
if (MBB == LastUse)
EndUsesReg = true;
else if (MBB != End)
EndUsesReg = false;
End = MBB;
}
return EndUsesReg ? Begin : End;
}
// Handles predecessors separately, only add KILLs to dominated ones
void SIFixSGPRLiveness::handlePreds(MachineBasicBlock *Begin,
MachineBasicBlock *End,
unsigned VirtReg) {
MachineBasicBlock::pred_iterator i, e;
for (i = End->pred_begin(), e = End->pred_end(); i != e; ++i) {
if (MD->dominates(End, *i))
continue; // ignore loops
if (MD->dominates(*i, Begin))
continue; // too far up, abort search
if (MD->dominates(Begin, *i)) {
// found end of livetime
addKill((*i)->getFirstTerminator(), VirtReg);
continue;
}
handlePreds(Begin, *i, VirtReg);
}
}
bool SIFixSGPRLiveness::handleVirtReg(unsigned VirtReg) {
MachineInstr *Def = MRI->getVRegDef(VirtReg);
if (!Def || MRI->use_empty(VirtReg))
return false; // No definition or not used
MachineBasicBlock *Begin = Def->getParent();
MachineBasicBlock *End = handleUses(VirtReg, Begin);
if (Begin == End)
return false; // Defined and only used in the same block
if (MD->dominates(Begin, End)) {
// Lifetime dominate the end node, just kill it here
addKill(End->getFirstNonPHI(), VirtReg);
} else {
// only some predecessors are dominate, handle them separately
handlePreds(Begin, End, VirtReg);
}
return true;
}
bool SIFixSGPRLiveness::runOnMachineFunction(MachineFunction &MF) {
bool Changes = false;
MRI = &MF.getRegInfo();
MD = &getAnalysis<MachineDominatorTree>();
MPD = &getAnalysis<MachinePostDominatorTree>();
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
if (!isSGPR(RegClass))
continue;
Changes |= handleVirtReg(VirtReg);
}
return Changes;
}
FunctionPass *llvm::createSIFixSGPRLivenessPass(TargetMachine &tm) {
return new SIFixSGPRLiveness(tm);
}

View File

@@ -44,8 +44,6 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::ADD, MVT::i64, Legal);
setOperationAction(ISD::ADD, MVT::i32, Legal);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// We need to custom lower loads from the USER_SGPR address space, so we can
@@ -254,7 +252,7 @@ EVT SITargetLowering::getSetCCResultType(EVT VT) const {
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::AND: return Loweri1ContextSwitch(Op, DAG, ISD::AND);
@@ -298,27 +296,99 @@ SDValue SITargetLowering::Loweri1ContextSwitch(SDValue Op,
return DAG.getNode(SIISD::VCC_BITCAST, DL, MVT::i1, OpNode);
}
SDValue SITargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue CC = Op.getOperand(1);
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue JumpT = Op.getOperand(4);
SDValue CmpValue;
SDValue Result;
CmpValue = DAG.getNode(
ISD::SETCC,
Op.getDebugLoc(),
MVT::i1,
LHS, RHS,
CC);
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
Result = DAG.getNode(
AMDGPUISD::BRANCH_COND,
CmpValue.getDebugLoc(),
MVT::Other, Chain,
JumpT, CmpValue);
return Result;
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return 0;
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
DebugLoc DL = BRCOND.getDebugLoc();
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = 0;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SDNode *SetCC = Intr;
assert(SetCC->getConstantOperandVal(1) == 1);
CondCodeSDNode *CC = cast<CondCodeSDNode>(SetCC->getOperand(2).getNode());
assert(CC->get() == ISD::SETNE);
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
// Build the result and
SmallVector<EVT, 4> Res;
for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
Res.push_back(Intr->getValueType(i));
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
Ops.push_back(Intr->getOperand(i));
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2);
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {

View File

@@ -43,9 +43,9 @@ class SITargetLowering : public AMDGPUTargetLowering {
SDValue Loweri1ContextSwitch(SDValue Op, SelectionDAG &DAG,
unsigned VCCNode) const;
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
public:
SITargetLowering(TargetMachine &tm);

View File

@@ -696,8 +696,9 @@ def S_ENDPGM : SOPP <0x00000001, (ins), "S_ENDPGM",
let isBranch = 1 in {
def S_BRANCH : SOPP <
0x00000002, (ins brtarget:$target), "S_BRANCH",
[]
>;
[(br bb:$target)]> {
let isBarrier = 1;
}
let DisableEncoding = "$scc" in {
def S_CBRANCH_SCC0 : SOPP <
@@ -1095,26 +1096,70 @@ def SI_WQM : InstSI <
} // end usesCustomInserter
// SI Psuedo branch instructions. These are used by the CFG structurizer pass
// SI Psuedo instructions. These are used by the CFG structurizer pass
// and should be lowered to ISA instructions prior to codegen.
let isBranch = 1, isTerminator = 1, mayLoad = 0, mayStore = 0,
hasSideEffects = 0 in {
def SI_IF_NZ : InstSI <
(outs),
(ins brtarget:$target, SReg_1:$vcc),
"SI_BRANCH_NZ",
[(IL_brcond bb:$target, SReg_1:$vcc)]
let mayLoad = 1, mayStore = 1, hasSideEffects = 1,
Uses = [EXEC], Defs = [EXEC] in {
let isBranch = 1, isTerminator = 1 in {
def SI_IF : InstSI <
(outs SReg_64:$dst),
(ins SReg_1:$vcc, brtarget:$target),
"SI_IF",
[(set SReg_64:$dst, (int_SI_if SReg_1:$vcc, bb:$target))]
>;
def SI_IF_Z : InstSI <
def SI_ELSE : InstSI <
(outs SReg_64:$dst),
(ins SReg_64:$src, brtarget:$target),
"SI_ELSE",
[(set SReg_64:$dst, (int_SI_else SReg_64:$src, bb:$target))]> {
let Constraints = "$src = $dst";
}
def SI_LOOP : InstSI <
(outs),
(ins brtarget:$target, SReg_1:$vcc),
"SI_BRANCH_Z",
[]
(ins SReg_64:$saved, brtarget:$target),
"SI_LOOP",
[(int_SI_loop SReg_64:$saved, bb:$target)]
>;
} // end isBranch = 1, isTerminator = 1, mayLoad = 0, mayStore = 0,
// hasSideEffects = 0
} // end isBranch = 1, isTerminator = 1
def SI_BREAK : InstSI <
(outs SReg_64:$dst),
(ins SReg_64:$src),
"SI_ELSE",
[(set SReg_64:$dst, (int_SI_break SReg_64:$src))]
>;
def SI_IF_BREAK : InstSI <
(outs SReg_64:$dst),
(ins SReg_1:$vcc, SReg_64:$src),
"SI_IF_BREAK",
[(set SReg_64:$dst, (int_SI_if_break SReg_1:$vcc, SReg_64:$src))]
>;
def SI_ELSE_BREAK : InstSI <
(outs SReg_64:$dst),
(ins SReg_64:$src0, SReg_64:$src1),
"SI_ELSE_BREAK",
[(set SReg_64:$dst, (int_SI_else_break SReg_64:$src0, SReg_64:$src1))]
>;
def SI_END_CF : InstSI <
(outs),
(ins SReg_64:$saved),
"SI_END_CF",
[(int_SI_end_cf SReg_64:$saved)]
>;
} // end mayLoad = 1, mayStore = 1, hasSideEffects = 1
// Uses = [EXEC], Defs = [EXEC]
} // end IsCodeGenOnly, isPseudo
/* int_SI_vs_load_input */

View File

@@ -39,4 +39,14 @@ let TargetPrefix = "SI", isTarget = 1 in {
def int_SI_fs_read_face : Intrinsic <[llvm_float_ty], [], [IntrNoMem]>;
def int_SI_fs_read_pos : Intrinsic <[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
/* Control flow Intrinsics */
def int_SI_if : Intrinsic<[llvm_i64_ty], [llvm_i1_ty, llvm_empty_ty], []>;
def int_SI_else : Intrinsic<[llvm_i64_ty], [llvm_i64_ty, llvm_empty_ty], []>;
def int_SI_break : Intrinsic<[llvm_i64_ty], [llvm_i64_ty], []>;
def int_SI_if_break : Intrinsic<[llvm_i64_ty], [llvm_i1_ty, llvm_i64_ty], []>;
def int_SI_else_break : Intrinsic<[llvm_i64_ty], [llvm_i64_ty, llvm_i64_ty], []>;
def int_SI_loop : Intrinsic<[], [llvm_i64_ty, llvm_empty_ty], []>;
def int_SI_end_cf : Intrinsic<[], [llvm_i64_ty], []>;
}

View File

@@ -8,10 +8,10 @@
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions (SI_IF_NZ, ELSE, ENDIF)
/// to predicated instructions.
/// \brief This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow (except loops) is handled using predicated instructions and
/// All control flow is handled using predicated instructions and
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
@@ -22,17 +22,17 @@
///
/// For example:
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
/// SI_IF_NZ %VCC
/// %SGPR0 = SI_IF %VCC
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
/// ELSE
/// %SGPR0 = SI_ELSE %SGPR0
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
/// ENDIF
/// SI_END_CF %SGPR0
///
/// becomes:
///
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0 // This instruction is an
/// S_CBRANCH_EXECZ label0 // This instruction is an optional
/// // optimization which allows us to
/// // branch if all the bits of
/// // EXEC are zero.
@@ -45,7 +45,7 @@
/// // instruction again.
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
/// label1:
/// %EXEC = S_OR_B64 %EXEC, %SGPR2 // Re-enable saved exec mask bits
/// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
@@ -65,11 +65,14 @@ class SILowerControlFlowPass : public MachineFunctionPass {
private:
static char ID;
const TargetInstrInfo *TII;
std::vector<unsigned> PredicateStack;
std::vector<unsigned> UnusedRegisters;
unsigned allocReg();
void freeReg(unsigned Reg);
void If(MachineInstr &MI);
void Else(MachineInstr &MI);
void Break(MachineInstr &MI);
void IfBreak(MachineInstr &MI);
void ElseBreak(MachineInstr &MI);
void Loop(MachineInstr &MI);
void EndCf(MachineInstr &MI);
public:
SILowerControlFlowPass(TargetMachine &tm) :
@@ -91,101 +94,199 @@ FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) {
return new SILowerControlFlowPass(tm);
}
void SILowerControlFlowPass::If(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg)
.addReg(Vcc);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Else(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst)
.addReg(Src); // Saved EXEC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Dst);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Break(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(AMDGPU::EXEC)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::IfBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Vcc)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::ElseBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Saved = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Saved)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Loop(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Src = MI.getOperand(0).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Src);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addOperand(MI.getOperand(1))
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
}
void SILowerControlFlowPass::EndCf(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
MI.eraseFromParent();
}
bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
// Find all the unused registers that can be used for the predicate stack.
for (TargetRegisterClass::iterator I = AMDGPU::SReg_64RegClass.begin(),
S = AMDGPU::SReg_64RegClass.end();
I != S; ++I) {
unsigned Reg = *I;
if (!MF.getRegInfo().isPhysRegUsed(Reg)) {
UnusedRegisters.insert(UnusedRegisters.begin(), Reg);
}
}
bool HaveCf = false;
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
I != MBB.end(); I = Next) {
I != MBB.end(); I = Next) {
Next = llvm::next(I);
MachineInstr &MI = *I;
unsigned Reg;
switch (MI.getOpcode()) {
default: break;
case AMDGPU::SI_IF_NZ:
Reg = allocReg();
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
Reg)
.addOperand(MI.getOperand(0)); // VCC
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64),
Reg)
.addReg(Reg)
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
PredicateStack.push_back(Reg);
case AMDGPU::SI_IF:
If(MI);
break;
case AMDGPU::ELSE:
Reg = PredicateStack.back();
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_SAVEEXEC_B64),
Reg)
.addReg(Reg);
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64),
AMDGPU::EXEC)
.addReg(Reg)
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
case AMDGPU::SI_ELSE:
Else(MI);
break;
case AMDGPU::ENDIF:
Reg = PredicateStack.back();
PredicateStack.pop_back();
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
freeReg(Reg);
case AMDGPU::SI_BREAK:
Break(MI);
break;
if (MF.getInfo<SIMachineFunctionInfo>()->ShaderType == ShaderType::PIXEL &&
PredicateStack.empty()) {
// If the exec mask is non-zero, skip the next two instructions
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(3)
.addReg(AMDGPU::EXEC);
case AMDGPU::SI_IF_BREAK:
IfBreak(MI);
break;
// Exec mask is zero: Export to NULL target...
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::EXP))
.addImm(0)
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addImm(0)
.addImm(1)
.addImm(1)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0);
case AMDGPU::SI_ELSE_BREAK:
ElseBreak(MI);
break;
// ... and terminate wavefront
BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_ENDPGM));
}
MI.eraseFromParent();
case AMDGPU::SI_LOOP:
Loop(MI);
break;
case AMDGPU::SI_END_CF:
HaveCf = true;
EndCf(MI);
break;
}
}
}
// TODO: What is this good for?
unsigned ShaderType = MF.getInfo<SIMachineFunctionInfo>()->ShaderType;
if (HaveCf && ShaderType == ShaderType::PIXEL) {
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
if (MBB.succ_empty()) {
MachineInstr &MI = *MBB.getFirstNonPHI();
DebugLoc DL = MI.getDebugLoc();
// If the exec mask is non-zero, skip the next two instructions
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(3)
.addReg(AMDGPU::EXEC);
// Exec mask is zero: Export to NULL target...
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::EXP))
.addImm(0)
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addImm(0)
.addImm(1)
.addImm(1)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0)
.addReg(AMDGPU::SREG_LIT_0);
// ... and terminate wavefront
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ENDPGM));
}
}
}
return true;
}
unsigned SILowerControlFlowPass::allocReg() {
assert(!UnusedRegisters.empty() && "Ran out of registers for predicate stack");
unsigned Reg = UnusedRegisters.back();
UnusedRegisters.pop_back();
return Reg;
}
void SILowerControlFlowPass::freeReg(unsigned Reg) {
UnusedRegisters.push_back(Reg);
}