Remove the old coalescer algorithm.

The new algorithm has been enabled by default for almost a week now and
seems to be stable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165062 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2012-10-02 22:45:03 +00:00
parent d4919a988d
commit 6c0c6d613a

View File

@ -68,11 +68,6 @@ VerifyCoalescing("verify-coalescing",
cl::desc("Verify machine instrs before and after register coalescing"), cl::desc("Verify machine instrs before and after register coalescing"),
cl::Hidden); cl::Hidden);
// Temporary option for testing new coalescer algo.
static cl::opt<bool>
NewCoalescer("new-coalescer", cl::Hidden, cl::init(true),
cl::desc("Use new coalescer algorithm"));
namespace { namespace {
class RegisterCoalescer : public MachineFunctionPass, class RegisterCoalescer : public MachineFunctionPass,
private LiveRangeEdit::Delegate { private LiveRangeEdit::Delegate {
@ -1844,348 +1839,10 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
return true; return true;
} }
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be. This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve. InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
SmallVector<VNInfo*, 16> &NewVNInfo,
DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
SmallVector<int, 16> &ThisValNoAssignments,
SmallVector<int, 16> &OtherValNoAssignments) {
unsigned VN = VNI->id;
// If the VN has already been computed, just return it.
if (ThisValNoAssignments[VN] >= 0)
return ThisValNoAssignments[VN];
assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
// If this val is not a copy from the other val, then it must be a new value
// number in the destination.
DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
if (I == ThisFromOther.end()) {
NewVNInfo.push_back(VNI);
return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
}
VNInfo *OtherValNo = I->second;
// Otherwise, this *is* a copy from the RHS. If the other side has already
// been computed, return it.
if (OtherValNoAssignments[OtherValNo->id] >= 0)
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
// Mark this value number as currently being computed, then ask what the
// ultimate value # of the other value is.
ThisValNoAssignments[VN] = -2;
unsigned UltimateVN =
ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
OtherValNoAssignments, ThisValNoAssignments);
return ThisValNoAssignments[VN] = UltimateVN;
}
// Find out if we have something like
// A = X
// B = X
// if so, we can pretend this is actually
// A = X
// B = A
// which allows us to coalesce A and B.
// VNI is the definition of B. LR is the life range of A that includes
// the slot just before B. If we return true, we add "B = X" to DupCopies.
// This implies that A dominates B.
static bool RegistersDefinedFromSameValue(LiveIntervals &li,
const TargetRegisterInfo &tri,
CoalescerPair &CP,
VNInfo *VNI,
VNInfo *OtherVNI,
SmallVector<MachineInstr*, 8> &DupCopies) {
// FIXME: This is very conservative. For example, we don't handle
// physical registers.
MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
if (!MI || CP.isPartial() || CP.isPhys())
return false;
unsigned A = CP.getDstReg();
if (!TargetRegisterInfo::isVirtualRegister(A))
return false;
unsigned B = CP.getSrcReg();
if (!TargetRegisterInfo::isVirtualRegister(B))
return false;
MachineInstr *OtherMI = li.getInstructionFromIndex(OtherVNI->def);
if (!OtherMI)
return false;
if (MI->isImplicitDef()) {
DupCopies.push_back(MI);
return true;
} else {
if (!MI->isFullCopy())
return false;
unsigned Src = MI->getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(Src))
return false;
if (!OtherMI->isFullCopy())
return false;
unsigned OtherSrc = OtherMI->getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(OtherSrc))
return false;
if (Src != OtherSrc)
return false;
// If the copies use two different value numbers of X, we cannot merge
// A and B.
LiveInterval &SrcInt = li.getInterval(Src);
// getVNInfoBefore returns NULL for undef copies. In this case, the
// optimization is still safe.
if (SrcInt.getVNInfoBefore(OtherVNI->def) !=
SrcInt.getVNInfoBefore(VNI->def))
return false;
DupCopies.push_back(MI);
return true;
}
}
/// joinIntervals - Attempt to join these two intervals. On failure, this /// joinIntervals - Attempt to join these two intervals. On failure, this
/// returns false. /// returns false.
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
// Handle physreg joins separately. return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
if (CP.isPhys())
return joinReservedPhysReg(CP);
if (NewCoalescer)
return joinVirtRegs(CP);
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
<< '\n');
// Compute the final value assignment, assuming that the live ranges can be
// coalesced.
SmallVector<int, 16> LHSValNoAssignments;
SmallVector<int, 16> RHSValNoAssignments;
DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
SmallVector<VNInfo*, 16> NewVNInfo;
SmallVector<MachineInstr*, 8> DupCopies;
SmallVector<MachineInstr*, 8> DeadCopies;
LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
DEBUG(dbgs() << "\t\tLHS = " << PrintReg(CP.getDstReg(), TRI) << ' ' << LHS
<< '\n');
// Loop over the value numbers of the LHS, seeing if any are defined from
// the RHS.
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
if (VNI->isUnused() || VNI->isPHIDef())
continue;
MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
assert(MI && "Missing def");
if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
continue;
// Figure out the value # from the RHS.
VNInfo *OtherVNI = RHS.getVNInfoBefore(VNI->def);
// The copy could be to an aliased physreg.
if (!OtherVNI)
continue;
// DstReg is known to be a register in the LHS interval. If the src is
// from the RHS interval, we can use its value #.
if (CP.isCoalescable(MI))
DeadCopies.push_back(MI);
else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
DupCopies))
continue;
LHSValsDefinedFromRHS[VNI] = OtherVNI;
}
// Loop over the value numbers of the RHS, seeing if any are defined from
// the LHS.
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
if (VNI->isUnused() || VNI->isPHIDef())
continue;
MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
assert(MI && "Missing def");
if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
continue;
// Figure out the value # from the LHS.
VNInfo *OtherVNI = LHS.getVNInfoBefore(VNI->def);
// The copy could be to an aliased physreg.
if (!OtherVNI)
continue;
// DstReg is known to be a register in the RHS interval. If the src is
// from the LHS interval, we can use its value #.
if (CP.isCoalescable(MI))
DeadCopies.push_back(MI);
else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
DupCopies))
continue;
RHSValsDefinedFromLHS[VNI] = OtherVNI;
}
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
unsigned VN = VNI->id;
if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
continue;
ComputeUltimateVN(VNI, NewVNInfo,
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
LHSValNoAssignments, RHSValNoAssignments);
}
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
unsigned VN = VNI->id;
if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
continue;
// If this value number isn't a copy from the LHS, it's a new number.
if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
NewVNInfo.push_back(VNI);
RHSValNoAssignments[VN] = NewVNInfo.size()-1;
continue;
}
ComputeUltimateVN(VNI, NewVNInfo,
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
RHSValNoAssignments, LHSValNoAssignments);
}
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
// interval lists to see if these intervals are coalescable.
LiveInterval::const_iterator I = LHS.begin();
LiveInterval::const_iterator IE = LHS.end();
LiveInterval::const_iterator J = RHS.begin();
LiveInterval::const_iterator JE = RHS.end();
// Collect interval end points that will no longer be kills.
SmallVector<MachineInstr*, 8> LHSOldKills;
SmallVector<MachineInstr*, 8> RHSOldKills;
// Skip ahead until the first place of potential sharing.
if (I != IE && J != JE) {
if (I->start < J->start) {
I = std::upper_bound(I, IE, J->start);
if (I != LHS.begin()) --I;
} else if (J->start < I->start) {
J = std::upper_bound(J, JE, I->start);
if (J != RHS.begin()) --J;
}
}
while (I != IE && J != JE) {
// Determine if these two live ranges overlap.
// If so, check value # info to determine if they are really different.
if (I->end > J->start && J->end > I->start) {
// If the live range overlap will map to the same value number in the
// result liverange, we can still coalesce them. If not, we can't.
if (LHSValNoAssignments[I->valno->id] !=
RHSValNoAssignments[J->valno->id])
return false;
// Extended live ranges should no longer be killed.
if (!I->end.isBlock() && I->end < J->end)
if (MachineInstr *MI = LIS->getInstructionFromIndex(I->end))
LHSOldKills.push_back(MI);
if (!J->end.isBlock() && J->end < I->end)
if (MachineInstr *MI = LIS->getInstructionFromIndex(J->end))
RHSOldKills.push_back(MI);
}
if (I->end < J->end)
++I;
else
++J;
}
// Clear kill flags where live ranges are extended.
while (!LHSOldKills.empty())
LHSOldKills.pop_back_val()->clearRegisterKills(LHS.reg, TRI);
while (!RHSOldKills.empty())
RHSOldKills.pop_back_val()->clearRegisterKills(RHS.reg, TRI);
if (LHSValNoAssignments.empty())
LHSValNoAssignments.push_back(-1);
if (RHSValNoAssignments.empty())
RHSValNoAssignments.push_back(-1);
// Now erase all the redundant copies.
for (unsigned i = 0, e = DeadCopies.size(); i != e; ++i) {
MachineInstr *MI = DeadCopies[i];
if (!ErasedInstrs.insert(MI))
continue;
DEBUG(dbgs() << "\t\terased:\t" << LIS->getInstructionIndex(MI)
<< '\t' << *MI);
LIS->RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
}
SmallVector<unsigned, 8> SourceRegisters;
for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
E = DupCopies.end(); I != E; ++I) {
MachineInstr *MI = *I;
if (!ErasedInstrs.insert(MI))
continue;
// If MI is a copy, then we have pretended that the assignment to B in
// A = X
// B = X
// was actually a copy from A. Now that we decided to coalesce A and B,
// transform the code into
// A = X
// In the case of the implicit_def, we just have to remove it.
if (!MI->isImplicitDef()) {
unsigned Src = MI->getOperand(1).getReg();
SourceRegisters.push_back(Src);
}
LIS->RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
}
// If B = X was the last use of X in a liverange, we have to shrink it now
// that B = X is gone.
for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
E = SourceRegisters.end(); I != E; ++I) {
LIS->shrinkToUses(&LIS->getInterval(*I));
}
// If we get here, we know that we can coalesce the live ranges. Ask the
// intervals to coalesce themselves now.
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
MRI);
return true;
} }
namespace { namespace {