Minor changes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@613 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-09-18 12:56:28 +00:00
parent 4c31fb5fbb
commit 6e44718192
3 changed files with 273 additions and 235 deletions

View File

@ -4,6 +4,10 @@
// InstrSelection.cpp
//
// Purpose:
// Machine-independent driver file for instruction selection.
// This file constructs a forest of BURG instruction trees and then
// use the BURG-generated tree grammar (BURM) to find the optimal
// instruction sequences for a given machine.
//
// History:
// 7/02/01 - Vikram Adve - Created
@ -35,7 +39,7 @@ cl::Enum<enum SelectDebugLevel_t> SelectDebugLevel("dselect", cl::NoFlags,
"enable instruction selection debugging information",
clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
clEnumValN(Select_DebugInstTrees, "i", "print instruction selection debug info"),
clEnumValN(Select_DebugInstTrees, "i", "print debugging info for instruction selection "),
clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"), 0);
@ -45,7 +49,9 @@ cl::Enum<enum SelectDebugLevel_t> SelectDebugLevel("dselect", cl::NoFlags,
// Returns true if instruction selection failed, false otherwise.
//---------------------------------------------------------------------------
bool SelectInstructionsForMethod(Method* method, TargetMachine &Target) {
bool
SelectInstructionsForMethod(Method* method, TargetMachine &Target)
{
bool failed = false;
//
@ -67,41 +73,47 @@ bool SelectInstructionsForMethod(Method* method, TargetMachine &Target) {
const hash_set<InstructionNode*> &treeRoots = instrForest.getRootSet();
for (hash_set<InstructionNode*>::const_iterator
treeRootIter = treeRoots.begin(); treeRootIter != treeRoots.end();
++treeRootIter) {
InstrTreeNode* basicNode = *treeRootIter;
++treeRootIter)
{
InstrTreeNode* basicNode = *treeRootIter;
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees) {
printcover(basicNode, 1, 0);
cerr << "\nCover cost == " << treecost(basicNode, 1, 0) << "\n\n";
printMatches(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees)
{
printcover(basicNode, 1, 0);
cerr << "\nCover cost == " << treecost(basicNode, 1, 0) << "\n\n";
printMatches(basicNode);
}
// Then recursively walk the tree to select instructions
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, Target))
{
failed = true;
break;
}
}
// Then recursively walk the tree to select instructions
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, Target)) {
failed = true;
break;
}
}
//
// Record instructions in the vector for each basic block
//
for (Method::iterator BI = method->begin(); BI != method->end(); ++BI) {
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II) {
MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
bbMvec.push_back(mvec[i]);
for (Method::iterator BI = method->begin(); BI != method->end(); ++BI)
{
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II)
{
MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
bbMvec.push_back(mvec[i]);
}
}
}
if (SelectDebugLevel >= Select_PrintMachineCode) {
cout << endl << "*** Machine instructions after INSTRUCTION SELECTION" << endl;
PrintMachineInstructions(method);
}
if (SelectDebugLevel >= Select_PrintMachineCode)
{
cout << endl << "*** Machine instructions after INSTRUCTION SELECTION" << endl;
PrintMachineInstructions(method);
}
return false;
}
@ -167,8 +179,10 @@ FoldGetElemChain(const InstructionNode* getElemInstrNode,
// may be used by multiple instructions).
//---------------------------------------------------------------------------
bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &Target) {
bool
SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &Target)
{
// Use a static vector to avoid allocating a new one per VM instruction
static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR];
@ -176,10 +190,12 @@ bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
//
int ruleForNode = burm_rule(treeRoot->state, goalnt);
if (ruleForNode == 0) {
cerr << "Could not match instruction tree for instr selection" << endl;
return true;
}
if (ruleForNode == 0)
{
cerr << "Could not match instruction tree for instr selection" << endl;
assert(0);
return true;
}
// Get this rule's non-terminals and the corresponding child nodes (if any)
//
@ -190,48 +206,54 @@ bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
// (If this is a list node, not an instruction, then skip this step).
// This function is specific to the target architecture.
//
if (treeRoot->opLabel != VRegListOp) {
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
if (treeRoot->opLabel != VRegListOp)
{
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, Target,
minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
for (unsigned i=0; i < N; i++) {
assert(minstrVec[i] != NULL);
instrNode->getInstruction()->addMachineInstruction(minstrVec[i]);
unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, Target,
minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
for (unsigned i=0; i < N; i++)
{
assert(minstrVec[i] != NULL);
instrNode->getInstruction()->addMachineInstruction(minstrVec[i]);
}
}
}
// Then, recursively compile the child nodes, if any.
//
if (nts[0]) { // i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule)) {
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
if (nts[0])
{ // i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
}
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule))
{
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
burm_kids(treeRoot, currentRule, kids);
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (int i = 0; nts[i]; i++) {
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode) {
if (SelectInstructionsForTree(kids[i], nts[i], Target))
return true; // failure
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (int i = 0; nts[i]; i++)
{
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
{
if (SelectInstructionsForTree(kids[i], nts[i], Target))
return true; // failure
}
}
}
}
return false; // success
}

View File

@ -14,6 +14,7 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Method.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/Instruction.h"
@ -49,7 +50,7 @@ MachineInstr::SetMachineOperand(unsigned int i,
assert(i < operands.size());
operands[i].Initialize(operandType, _val);
operands[i].isDef = isdef ||
TargetInstrDescriptors[opCode].resultPos == (int) i;
TargetInstrDescriptors[opCode].resultPos == (int) i;
}
void
@ -60,7 +61,7 @@ MachineInstr::SetMachineOperand(unsigned int i,
assert(i < operands.size());
operands[i].InitializeConst(operandType, intValue);
operands[i].isDef = isdef ||
TargetInstrDescriptors[opCode].resultPos == (int) i;
TargetInstrDescriptors[opCode].resultPos == (int) i;
}
void
@ -70,7 +71,7 @@ MachineInstr::SetMachineOperand(unsigned int i,
assert(i < operands.size());
operands[i].InitializeReg(regNum);
operands[i].isDef = isdef ||
TargetInstrDescriptors[opCode].resultPos == (int) i;
TargetInstrDescriptors[opCode].resultPos == (int) i;
}
void
@ -104,39 +105,45 @@ operator<< (ostream& os, const MachineInstr& minstr)
return os;
}
static inline ostream &OutputOperand(ostream &os, const MachineOperand &mop) {
switch (mop.getOperandType()) {
case MachineOperand::MO_CCRegister:
case MachineOperand::MO_VirtualRegister:
return os << "(val " << mop.getVRegValue() << ")";
case MachineOperand::MO_MachineRegister:
return os << "(" << mop.getMachineRegNum() << ")";
default:
assert(0 && "Unknown operand type");
return os;
}
static inline ostream&
OutputOperand(ostream &os, const MachineOperand &mop)
{
switch (mop.getOperandType())
{
case MachineOperand::MO_CCRegister:
case MachineOperand::MO_VirtualRegister:
return os << "(val " << mop.getVRegValue() << ")";
case MachineOperand::MO_MachineRegister:
return os << "(" << mop.getMachineRegNum() << ")";
default:
assert(0 && "Unknown operand type");
return os;
}
}
ostream &operator<<(ostream &os, const MachineOperand &mop) {
switch(mop.opType) {
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_MachineRegister:
os << "%reg";
return OutputOperand(os, mop);
case MachineOperand::MO_CCRegister:
os << "%ccreg";
return OutputOperand(os, mop);
case MachineOperand::MO_SignExtendedImmed:
return os << mop.immedVal;
case MachineOperand::MO_UnextendedImmed:
return os << mop.immedVal;
case MachineOperand::MO_PCRelativeDisp:
return os << "%disp(label " << mop.getVRegValue() << ")";
default:
assert(0 && "Unrecognized operand type");
break;
}
ostream&
operator<<(ostream &os, const MachineOperand &mop)
{
switch(mop.opType)
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_MachineRegister:
os << "%reg";
return OutputOperand(os, mop);
case MachineOperand::MO_CCRegister:
os << "%ccreg";
return OutputOperand(os, mop);
case MachineOperand::MO_SignExtendedImmed:
return os << mop.immedVal;
case MachineOperand::MO_UnextendedImmed:
return os << mop.immedVal;
case MachineOperand::MO_PCRelativeDisp:
return os << "%disp(label " << mop.getVRegValue() << ")";
default:
assert(0 && "Unrecognized operand type");
break;
}
return os;
}
@ -188,12 +195,12 @@ Set2OperandsFromInstr(MachineInstr* minstr,
#ifdef REVERT_TO_EXPLICIT_CONSTANT_CHECKS
unsigned
Set3OperandsFromInstrJUNK(MachineInstr* minstr,
InstructionNode* vmInstrNode,
const TargetMachine& target,
bool canDiscardResult,
int op1Position,
int op2Position,
int resultPosition)
InstructionNode* vmInstrNode,
const TargetMachine& target,
bool canDiscardResult,
int op1Position,
int op2Position,
int resultPosition)
{
assert(op1Position >= 0);
assert(resultPosition >= 0);
@ -208,10 +215,11 @@ Set3OperandsFromInstrJUNK(MachineInstr* minstr,
minstr->SetMachineOperand(op1Position, /*regNum*/ target.zeroRegNum);
else
{
if (op1Value->isConstant()) {
// value is constant and must be loaded from constant pool
returnFlags = returnFlags | (1 << op1Position);
}
if (op1Value->isConstant())
{
// value is constant and must be loaded from constant pool
returnFlags = returnFlags | (1 << op1Position);
}
minstr->SetMachineOperand(op1Position, MachineOperand::MO_VirtualRegister,
op1Value);
}
@ -233,10 +241,11 @@ Set3OperandsFromInstrJUNK(MachineInstr* minstr,
minstr->SetMachineOperand(op2Position, machineRegNum);
else if (op2type == MachineOperand::MO_VirtualRegister)
{
if (op2Value->isConstant()) {
// value is constant and must be loaded from constant pool
returnFlags = returnFlags | (1 << op2Position);
}
if (op2Value->isConstant())
{
// value is constant and must be loaded from constant pool
returnFlags = returnFlags | (1 << op2Position);
}
minstr->SetMachineOperand(op2Position, op2type, op2Value);
}
else
@ -279,10 +288,12 @@ Set3OperandsFromInstr(MachineInstr* minstr,
vmInstrNode->rightChild()->getValue());
// result operand: if it can be discarded, use a dead register if one exists
if (canDiscardResult && target.zeroRegNum >= 0)
minstr->SetMachineOperand(resultPosition, target.zeroRegNum);
if (canDiscardResult && target.getRegInfo().getZeroRegNum() >= 0)
minstr->SetMachineOperand(resultPosition,
target.getRegInfo().getZeroRegNum());
else
minstr->SetMachineOperand(resultPosition, MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
minstr->SetMachineOperand(resultPosition,
MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
}
@ -304,16 +315,18 @@ ChooseRegOrImmed(Value* val,
ConstPoolVal *CPV = val->castConstant();
if (!CPV) return opType;
if (CPV->getType() == Type::BoolTy) {
ConstPoolBool *CPB = (ConstPoolBool*)CPV;
if (!CPB->getValue() && target.zeroRegNum >= 0) {
getMachineRegNum = target.zeroRegNum;
return MachineOperand::MO_MachineRegister;
}
if (CPV->getType() == Type::BoolTy)
{
ConstPoolBool *CPB = (ConstPoolBool*)CPV;
if (!CPB->getValue() && target.getRegInfo().getZeroRegNum() >= 0)
{
getMachineRegNum = target.getRegInfo().getZeroRegNum();
return MachineOperand::MO_MachineRegister;
}
getImmedValue = 1;
return MachineOperand::MO_SignExtendedImmed;
}
getImmedValue = 1;
return MachineOperand::MO_SignExtendedImmed;
}
if (!CPV->getType()->isIntegral()) return opType;
@ -323,22 +336,28 @@ ChooseRegOrImmed(Value* val,
// unsigned constants to signed).
//
int64_t intValue;
if (CPV->getType()->isSigned()) {
intValue = ((ConstPoolSInt*)CPV)->getValue();
} else {
uint64_t V = ((ConstPoolUInt*)CPV)->getValue();
if (V >= INT64_MAX) return opType;
intValue = (int64_t)V;
}
if (CPV->getType()->isSigned())
{
intValue = ((ConstPoolSInt*)CPV)->getValue();
}
else
{
uint64_t V = ((ConstPoolUInt*)CPV)->getValue();
if (V >= INT64_MAX) return opType;
intValue = (int64_t)V;
}
if (intValue == 0 && target.zeroRegNum >= 0){
opType = MachineOperand::MO_MachineRegister;
getMachineRegNum = target.zeroRegNum;
} else if (canUseImmed &&
target.getInstrInfo().constantFitsInImmedField(opCode, intValue)) {
opType = MachineOperand::MO_SignExtendedImmed;
getImmedValue = intValue;
}
if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
{
opType = MachineOperand::MO_MachineRegister;
getMachineRegNum = target.getRegInfo().getZeroRegNum();
}
else if (canUseImmed &&
target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
{
opType = MachineOperand::MO_SignExtendedImmed;
getImmedValue = intValue;
}
return opType;
}
@ -365,28 +384,3 @@ PrintMachineInstructions(const Method *const method)
cout << endl << "End method \"" << method->getName() << "\""
<< endl << endl;
}
#if 0
void PrintMachineInstructions(Method * method)
{
cout << "\n" << method->getReturnType()
<< " \"" << method->getName() << "\"" << endl;
for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI)
{
const BasicBlock* bb = *BI;
cout << "\n"
<< (bb->hasName()? bb->getName() : "Label")
<< " (" << bb << ")" << ":"
<< endl;
const MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
cout << "\t" << *mvec[i] << endl;
}
cout << endl << "End method \"" << method->getName() << "\""
<< endl << endl;
}
#endif

View File

@ -4,6 +4,10 @@
// InstrSelection.cpp
//
// Purpose:
// Machine-independent driver file for instruction selection.
// This file constructs a forest of BURG instruction trees and then
// use the BURG-generated tree grammar (BURM) to find the optimal
// instruction sequences for a given machine.
//
// History:
// 7/02/01 - Vikram Adve - Created
@ -35,7 +39,7 @@ cl::Enum<enum SelectDebugLevel_t> SelectDebugLevel("dselect", cl::NoFlags,
"enable instruction selection debugging information",
clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
clEnumValN(Select_DebugInstTrees, "i", "print instruction selection debug info"),
clEnumValN(Select_DebugInstTrees, "i", "print debugging info for instruction selection "),
clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"), 0);
@ -45,7 +49,9 @@ cl::Enum<enum SelectDebugLevel_t> SelectDebugLevel("dselect", cl::NoFlags,
// Returns true if instruction selection failed, false otherwise.
//---------------------------------------------------------------------------
bool SelectInstructionsForMethod(Method* method, TargetMachine &Target) {
bool
SelectInstructionsForMethod(Method* method, TargetMachine &Target)
{
bool failed = false;
//
@ -67,41 +73,47 @@ bool SelectInstructionsForMethod(Method* method, TargetMachine &Target) {
const hash_set<InstructionNode*> &treeRoots = instrForest.getRootSet();
for (hash_set<InstructionNode*>::const_iterator
treeRootIter = treeRoots.begin(); treeRootIter != treeRoots.end();
++treeRootIter) {
InstrTreeNode* basicNode = *treeRootIter;
++treeRootIter)
{
InstrTreeNode* basicNode = *treeRootIter;
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees) {
printcover(basicNode, 1, 0);
cerr << "\nCover cost == " << treecost(basicNode, 1, 0) << "\n\n";
printMatches(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees)
{
printcover(basicNode, 1, 0);
cerr << "\nCover cost == " << treecost(basicNode, 1, 0) << "\n\n";
printMatches(basicNode);
}
// Then recursively walk the tree to select instructions
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, Target))
{
failed = true;
break;
}
}
// Then recursively walk the tree to select instructions
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, Target)) {
failed = true;
break;
}
}
//
// Record instructions in the vector for each basic block
//
for (Method::iterator BI = method->begin(); BI != method->end(); ++BI) {
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II) {
MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
bbMvec.push_back(mvec[i]);
for (Method::iterator BI = method->begin(); BI != method->end(); ++BI)
{
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II)
{
MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
bbMvec.push_back(mvec[i]);
}
}
}
if (SelectDebugLevel >= Select_PrintMachineCode) {
cout << endl << "*** Machine instructions after INSTRUCTION SELECTION" << endl;
PrintMachineInstructions(method);
}
if (SelectDebugLevel >= Select_PrintMachineCode)
{
cout << endl << "*** Machine instructions after INSTRUCTION SELECTION" << endl;
PrintMachineInstructions(method);
}
return false;
}
@ -167,8 +179,10 @@ FoldGetElemChain(const InstructionNode* getElemInstrNode,
// may be used by multiple instructions).
//---------------------------------------------------------------------------
bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &Target) {
bool
SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &Target)
{
// Use a static vector to avoid allocating a new one per VM instruction
static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR];
@ -176,10 +190,12 @@ bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
//
int ruleForNode = burm_rule(treeRoot->state, goalnt);
if (ruleForNode == 0) {
cerr << "Could not match instruction tree for instr selection" << endl;
return true;
}
if (ruleForNode == 0)
{
cerr << "Could not match instruction tree for instr selection" << endl;
assert(0);
return true;
}
// Get this rule's non-terminals and the corresponding child nodes (if any)
//
@ -190,48 +206,54 @@ bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
// (If this is a list node, not an instruction, then skip this step).
// This function is specific to the target architecture.
//
if (treeRoot->opLabel != VRegListOp) {
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
if (treeRoot->opLabel != VRegListOp)
{
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, Target,
minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
for (unsigned i=0; i < N; i++) {
assert(minstrVec[i] != NULL);
instrNode->getInstruction()->addMachineInstruction(minstrVec[i]);
unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, Target,
minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
for (unsigned i=0; i < N; i++)
{
assert(minstrVec[i] != NULL);
instrNode->getInstruction()->addMachineInstruction(minstrVec[i]);
}
}
}
// Then, recursively compile the child nodes, if any.
//
if (nts[0]) { // i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule)) {
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
if (nts[0])
{ // i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
}
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule))
{
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
burm_kids(treeRoot, currentRule, kids);
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (int i = 0; nts[i]; i++) {
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode) {
if (SelectInstructionsForTree(kids[i], nts[i], Target))
return true; // failure
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (int i = 0; nts[i]; i++)
{
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
{
if (SelectInstructionsForTree(kids[i], nts[i], Target))
return true; // failure
}
}
}
}
return false; // success
}