diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index eee231df8c9..13313e753b0 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -862,6 +862,72 @@ bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero, return false; } +/// \brief Test whether a GEP's result is known to be non-null. +/// +/// Uses properties inherent in a GEP to try to determine whether it is known +/// to be non-null. +/// +/// Currently this routine does not support vector GEPs. +static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, + unsigned Depth) { + if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) + return false; + + // FIXME: Support vector-GEPs. + assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); + + // If the base pointer is non-null, we cannot walk to a null address with an + // inbounds GEP in address space zero. + if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) + return true; + + // Past this, if we don't have DataLayout, we can't do much. + if (!DL) + return false; + + // Walk the GEP operands and see if any operand introduces a non-zero offset. + // If so, then the GEP cannot produce a null pointer, as doing so would + // inherently violate the inbounds contract within address space zero. + for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); + GTI != GTE; ++GTI) { + // Struct types are easy -- they must always be indexed by a constant. + if (StructType *STy = dyn_cast(*GTI)) { + ConstantInt *OpC = cast(GTI.getOperand()); + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = DL->getStructLayout(STy); + uint64_t ElementOffset = SL->getElementOffset(ElementIdx); + if (ElementOffset > 0) + return true; + continue; + } + + // If we have a zero-sized type, the index doesn't matter. Keep looping. + if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) + continue; + + // Fast path the constant operand case both for efficiency and so we don't + // increment Depth when just zipping down an all-constant GEP. + if (ConstantInt *OpC = dyn_cast(GTI.getOperand())) { + if (!OpC->isZero()) + return true; + continue; + } + + // We post-increment Depth here because while isKnownNonZero increments it + // as well, when we pop back up that increment won't persist. We don't want + // to recurse 10k times just because we have 10k GEP operands. We don't + // bail completely out because we want to handle constant GEPs regardless + // of depth. + if (Depth++ >= MaxDepth) + continue; + + if (isKnownNonZero(GTI.getOperand(), DL, Depth)) + return true; + } + + return false; +} + /// isKnownNonZero - Return true if the given value is known to be non-zero /// when defined. For vectors return true if every element is known to be /// non-zero when defined. Supports values with integer or pointer type and @@ -881,6 +947,13 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { if (Depth++ >= MaxDepth) return false; + // Check for pointer simplifications. + if (V->getType()->isPointerTy()) { + if (GEPOperator *GEP = dyn_cast(V)) + if (isGEPKnownNonNull(GEP, TD, Depth)) + return true; + } + unsigned BitWidth = getBitWidth(V->getType(), TD); // X | Y != 0 if X != 0 or Y != 0. diff --git a/test/Transforms/InstSimplify/compare.ll b/test/Transforms/InstSimplify/compare.ll index ce2bb799c81..56627b99a47 100644 --- a/test/Transforms/InstSimplify/compare.ll +++ b/test/Transforms/InstSimplify/compare.ll @@ -165,6 +165,46 @@ entry: ret i1 %cmp } +define i1 @gep13(i8* %ptr) { +; CHECK: @gep13 +; We can prove this GEP is non-null because it is inbounds. + %x = getelementptr inbounds i8* %ptr, i32 1 + %cmp = icmp eq i8* %x, null + ret i1 %cmp +; CHECK-NEXT: ret i1 false +} + +define i1 @gep14({ {}, i8 }* %ptr) { +; CHECK: @gep14 +; We can't simplify this because the offset of one in the GEP actually doesn't +; move the pointer. + %x = getelementptr inbounds { {}, i8 }* %ptr, i32 0, i32 1 + %cmp = icmp eq i8* %x, null + ret i1 %cmp +; CHECK-NOT: ret i1 false +} + +define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) { +; CHECK: @gep15 +; We can prove this GEP is non-null even though there is a user value, as we +; would necessarily violate inbounds on one side or the other. + %x = getelementptr inbounds { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1 + %cmp = icmp eq i8* %x, null + ret i1 %cmp +; CHECK-NEXT: ret i1 false +} + +define i1 @gep16(i8* %ptr, i32 %a) { +; CHECK: @gep16 +; We can prove this GEP is non-null because it is inbounds and because we know +; %b is non-zero even though we don't know its value. + %b = or i32 %a, 1 + %x = getelementptr inbounds i8* %ptr, i32 %b + %cmp = icmp eq i8* %x, null + ret i1 %cmp +; CHECK-NEXT: ret i1 false +} + define i1 @zext(i32 %x) { ; CHECK: @zext %e1 = zext i32 %x to i64