mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-13 04:38:24 +00:00
Revert "SLPVectorizer: Handle more horizontal reductions (disabled)"
This reverts commit r191108. The horizontal.ll test case fails under libgmalloc. Thanks Shuxin for pointing this out to me. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191121 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -49,11 +49,6 @@ static cl::opt<int>
|
||||
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
|
||||
cl::desc("Only vectorize if you gain more than this "
|
||||
"number "));
|
||||
|
||||
static cl::opt<bool>
|
||||
ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
|
||||
cl::desc("Attempt to vectorize horizontal reductions"));
|
||||
|
||||
namespace {
|
||||
|
||||
static const unsigned MinVecRegSize = 128;
|
||||
@ -243,21 +238,17 @@ public:
|
||||
}
|
||||
|
||||
/// \brief Vectorize the tree that starts with the elements in \p VL.
|
||||
/// Returns the vectorized root and the scalar operations the root was based
|
||||
/// on.
|
||||
std::pair<Value *, ValueList *> vectorizeTree();
|
||||
void vectorizeTree();
|
||||
|
||||
/// \returns the vectorization cost of the subtree that starts at \p VL.
|
||||
/// A negative number means that this is profitable.
|
||||
int getTreeCost();
|
||||
|
||||
/// Construct a vectorizable tree that starts at \p Roots and is possibly
|
||||
/// used by a reduction of \p RdxOps.
|
||||
void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
|
||||
/// Construct a vectorizable tree that starts at \p Roots.
|
||||
void buildTree(ArrayRef<Value *> Roots);
|
||||
|
||||
/// Clear the internal data structures that are created by 'buildTree'.
|
||||
void deleteTree() {
|
||||
RdxOps = 0;
|
||||
VectorizableTree.clear();
|
||||
ScalarToTreeEntry.clear();
|
||||
MustGather.clear();
|
||||
@ -410,9 +401,6 @@ private:
|
||||
/// Numbers instructions in different blocks.
|
||||
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
|
||||
|
||||
/// Reduction operators.
|
||||
ValueSet *RdxOps;
|
||||
|
||||
// Analysis and block reference.
|
||||
Function *F;
|
||||
ScalarEvolution *SE;
|
||||
@ -425,9 +413,8 @@ private:
|
||||
IRBuilder<> Builder;
|
||||
};
|
||||
|
||||
void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
|
||||
void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
|
||||
deleteTree();
|
||||
RdxOps = Rdx;
|
||||
if (!getSameType(Roots))
|
||||
return;
|
||||
buildTree_rec(Roots, 0);
|
||||
@ -458,12 +445,8 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
|
||||
assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
|
||||
continue;
|
||||
}
|
||||
Instruction *UserInst = dyn_cast<Instruction>(*User);
|
||||
if (!UserInst)
|
||||
continue;
|
||||
|
||||
// Ignore uses that are part of the reduction.
|
||||
if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
|
||||
if (!isa<Instruction>(*User))
|
||||
continue;
|
||||
|
||||
DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
|
||||
@ -595,10 +578,6 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// This user is part of the reduction.
|
||||
if (RdxOps && RdxOps->count(User))
|
||||
continue;
|
||||
|
||||
// Make sure that we can schedule this unknown user.
|
||||
BlockNumbering &BN = BlocksNumbers[BB];
|
||||
int UserIndex = BN.getIndex(User);
|
||||
@ -1393,7 +1372,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::pair<Value *, BoUpSLP::ValueList *> BoUpSLP::vectorizeTree() {
|
||||
void BoUpSLP::vectorizeTree() {
|
||||
Builder.SetInsertPoint(F->getEntryBlock().begin());
|
||||
vectorizeTree(&VectorizableTree[0]);
|
||||
|
||||
@ -1470,10 +1449,7 @@ std::pair<Value *, BoUpSLP::ValueList *> BoUpSLP::vectorizeTree() {
|
||||
DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
|
||||
assert(!MustGather.count(*User) &&
|
||||
"Replacing gathered value with undef");
|
||||
|
||||
assert((ScalarToTreeEntry.count(*User) ||
|
||||
// It is legal to replace the reduction users by undef.
|
||||
(RdxOps && RdxOps->count(*User))) &&
|
||||
assert(ScalarToTreeEntry.count(*User) &&
|
||||
"Replacing out-of-tree value with undef");
|
||||
}
|
||||
Value *Undef = UndefValue::get(Ty);
|
||||
@ -1488,9 +1464,6 @@ std::pair<Value *, BoUpSLP::ValueList *> BoUpSLP::vectorizeTree() {
|
||||
BlocksNumbers[it].forget();
|
||||
}
|
||||
Builder.ClearInsertionPoint();
|
||||
|
||||
return std::make_pair(VectorizableTree[0].VectorizedValue,
|
||||
&VectorizableTree[0].Scalars);
|
||||
}
|
||||
|
||||
void BoUpSLP::optimizeGatherSequence() {
|
||||
@ -1914,310 +1887,6 @@ bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// \brief Generate a shuffle mask to be used in a reduction tree.
|
||||
///
|
||||
/// \param VecLen The length of the vector to be reduced.
|
||||
/// \param NumEltsToRdx The number of elements that should be reduced in the
|
||||
/// vector.
|
||||
/// \param IsPairwise Whether the reduction is a pairwise or splitting
|
||||
/// reduction. A pairwise reduction will generate a mask of
|
||||
/// <0,2,...> or <1,3,..> while a splitting reduction will generate
|
||||
/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
|
||||
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
|
||||
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
|
||||
bool IsPairwise, bool IsLeft,
|
||||
IRBuilder<> &Builder) {
|
||||
assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
|
||||
|
||||
SmallVector<Constant *, 32> ShuffleMask(
|
||||
VecLen, UndefValue::get(Builder.getInt32Ty()));
|
||||
|
||||
if (IsPairwise)
|
||||
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
|
||||
for (unsigned i = 0; i != NumEltsToRdx; ++i)
|
||||
ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
|
||||
else
|
||||
// Move the upper half of the vector to the lower half.
|
||||
for (unsigned i = 0; i != NumEltsToRdx; ++i)
|
||||
ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
|
||||
|
||||
return ConstantVector::get(ShuffleMask);
|
||||
}
|
||||
|
||||
|
||||
/// Model horizontal reductions.
|
||||
///
|
||||
/// A horizontal reduction is a tree of reduction operations (currently add and
|
||||
/// fadd) that has operations that can be put into a vector as its leaf.
|
||||
/// For example, this tree:
|
||||
///
|
||||
/// mul mul mul mul
|
||||
/// \ / \ /
|
||||
/// + +
|
||||
/// \ /
|
||||
/// +
|
||||
/// This tree has "mul" as its reduced values and "+" as its reduction
|
||||
/// operations. A reduction might be feeding into a store or a binary operation
|
||||
/// feeding a phi.
|
||||
/// ...
|
||||
/// \ /
|
||||
/// +
|
||||
/// \
|
||||
/// phi +=
|
||||
///
|
||||
/// Or:
|
||||
/// ...
|
||||
/// \ /
|
||||
/// +
|
||||
/// \
|
||||
/// *p =
|
||||
///
|
||||
class HorizontalReduction {
|
||||
SmallPtrSet<Value *, 16> ReductionOps;
|
||||
SmallVector<Value *, 32> ReducedVals;
|
||||
|
||||
BinaryOperator *ReductionRoot;
|
||||
PHINode *ReductionPHI;
|
||||
|
||||
/// The opcode of the reduction.
|
||||
unsigned ReductionOpcode;
|
||||
/// The opcode of the values we perform a reduction on.
|
||||
unsigned ReducedValueOpcode;
|
||||
/// The width of one full horizontal reduction operation.
|
||||
unsigned ReduxWidth;
|
||||
/// Should we model this reduction as a pairwise reduction tree or a tree that
|
||||
/// splits the vector in halves and adds those halves.
|
||||
bool IsPairwiseReduction;
|
||||
|
||||
public:
|
||||
HorizontalReduction()
|
||||
: ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
|
||||
ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
|
||||
|
||||
/// \brief Try to find a reduction tree.
|
||||
bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
|
||||
DataLayout *DL) {
|
||||
assert((!Phi ||
|
||||
std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
|
||||
"Thi phi needs to use the binary operator");
|
||||
|
||||
// We could have a initial reductions that is not an add.
|
||||
// r *= v1 + v2 + v3 + v4
|
||||
// In such a case start looking for a tree rooted in the first '+'.
|
||||
if (Phi) {
|
||||
if (B->getOperand(0) == Phi) {
|
||||
Phi = 0;
|
||||
B = dyn_cast<BinaryOperator>(B->getOperand(1));
|
||||
} else if (B->getOperand(1) == Phi) {
|
||||
Phi = 0;
|
||||
B = dyn_cast<BinaryOperator>(B->getOperand(0));
|
||||
}
|
||||
}
|
||||
|
||||
if (!B)
|
||||
return false;
|
||||
|
||||
Type *Ty = B->getType();
|
||||
if (Ty->isVectorTy())
|
||||
return false;
|
||||
|
||||
ReductionOpcode = B->getOpcode();
|
||||
ReducedValueOpcode = 0;
|
||||
ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
|
||||
ReductionRoot = B;
|
||||
ReductionPHI = Phi;
|
||||
|
||||
if (ReduxWidth < 4)
|
||||
return false;
|
||||
|
||||
// We currently only support adds.
|
||||
if (ReductionOpcode != Instruction::Add &&
|
||||
ReductionOpcode != Instruction::FAdd)
|
||||
return false;
|
||||
|
||||
// Post order traverse the reduction tree starting at B. We only handle true
|
||||
// trees containing only binary operators.
|
||||
SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
|
||||
Stack.push_back(std::make_pair(B, 0));
|
||||
while (!Stack.empty()) {
|
||||
BinaryOperator *TreeN = Stack.back().first;
|
||||
unsigned EdgeToVist = Stack.back().second++;
|
||||
bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
|
||||
|
||||
// Only handle trees in the current basic block.
|
||||
if (TreeN->getParent() != B->getParent())
|
||||
return false;
|
||||
|
||||
// Each tree node needs to have one user except for the ultimate
|
||||
// reduction.
|
||||
if (!TreeN->hasOneUse() && TreeN != B)
|
||||
return false;
|
||||
|
||||
// Postorder vist.
|
||||
if (EdgeToVist == 2 || IsReducedValue) {
|
||||
if (IsReducedValue) {
|
||||
// Make sure that the opcodes of the operations that we are going to
|
||||
// reduce match.
|
||||
if (!ReducedValueOpcode)
|
||||
ReducedValueOpcode = TreeN->getOpcode();
|
||||
else if (ReducedValueOpcode != TreeN->getOpcode())
|
||||
return false;
|
||||
ReducedVals.push_back(TreeN);
|
||||
} else {
|
||||
// We need to be able to reassociate the adds.
|
||||
if (!TreeN->isAssociative())
|
||||
return false;
|
||||
ReductionOps.insert(TreeN);
|
||||
}
|
||||
// Retract.
|
||||
Stack.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Visit left or right.
|
||||
Value *NextV = TreeN->getOperand(EdgeToVist);
|
||||
BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
|
||||
if (Next)
|
||||
Stack.push_back(std::make_pair(Next, 0));
|
||||
else if (NextV != Phi)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Attempt to vectorize the tree found by
|
||||
/// matchAssociativeReduction.
|
||||
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
|
||||
if (ReducedVals.empty())
|
||||
return false;
|
||||
|
||||
unsigned NumReducedVals = ReducedVals.size();
|
||||
if (NumReducedVals < ReduxWidth)
|
||||
return false;
|
||||
|
||||
Value *VectorizedTree = 0;
|
||||
IRBuilder<> Builder(ReductionRoot);
|
||||
FastMathFlags Unsafe;
|
||||
Unsafe.setUnsafeAlgebra();
|
||||
Builder.SetFastMathFlags(Unsafe);
|
||||
unsigned i = 0;
|
||||
|
||||
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
|
||||
ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
|
||||
V.buildTree(ValsToReduce, &ReductionOps);
|
||||
|
||||
// Estimate cost.
|
||||
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
|
||||
if (Cost >= -SLPCostThreshold)
|
||||
break;
|
||||
|
||||
DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
|
||||
<< ". (HorRdx)\n");
|
||||
|
||||
// Vectorize a tree.
|
||||
Value *VectorizedRoot;
|
||||
BoUpSLP::ValueList *Scalars;
|
||||
tie(VectorizedRoot, Scalars) = V.vectorizeTree();
|
||||
|
||||
// Emit a reduction.
|
||||
Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
|
||||
if (VectorizedTree) {
|
||||
Builder.SetCurrentDebugLocation(
|
||||
cast<Instruction>((*Scalars)[0])->getDebugLoc());
|
||||
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
|
||||
ReducedSubTree, "bin.rdx");
|
||||
} else
|
||||
VectorizedTree = ReducedSubTree;
|
||||
}
|
||||
|
||||
if (VectorizedTree) {
|
||||
// Finish the reduction.
|
||||
for (; i < NumReducedVals; ++i) {
|
||||
Builder.SetCurrentDebugLocation(
|
||||
cast<Instruction>(ReducedVals[i])->getDebugLoc());
|
||||
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
|
||||
ReducedVals[i]);
|
||||
}
|
||||
// Update users.
|
||||
if (ReductionPHI) {
|
||||
assert(ReductionRoot != NULL && "Need a reduction operation");
|
||||
ReductionRoot->setOperand(0, VectorizedTree);
|
||||
ReductionRoot->setOperand(1, ReductionPHI);
|
||||
} else
|
||||
ReductionRoot->replaceAllUsesWith(VectorizedTree);
|
||||
}
|
||||
return VectorizedTree != 0;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/// \brief Calcuate the cost of a reduction.
|
||||
int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
|
||||
Type *ScalarTy = FirstReducedVal->getType();
|
||||
Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
|
||||
|
||||
int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
|
||||
int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
|
||||
|
||||
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
|
||||
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
|
||||
|
||||
int ScalarReduxCost =
|
||||
ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
|
||||
|
||||
DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
|
||||
<< " for reduction that starts with " << *FirstReducedVal
|
||||
<< " (It is a "
|
||||
<< (IsPairwiseReduction ? "pairwise" : "splitting")
|
||||
<< " reduction)\n");
|
||||
|
||||
return VecReduxCost - ScalarReduxCost;
|
||||
}
|
||||
|
||||
static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
|
||||
Value *R, const Twine &Name = "") {
|
||||
if (Opcode == Instruction::FAdd)
|
||||
return Builder.CreateFAdd(L, R, Name);
|
||||
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
|
||||
}
|
||||
|
||||
/// \brief Emit a horizontal reduction of the vectorized value.
|
||||
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
|
||||
assert(VectorizedValue && "Need to have a vectorized tree node");
|
||||
Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
|
||||
assert(isPowerOf2_32(ReduxWidth) &&
|
||||
"We only handle power-of-two reductions for now");
|
||||
|
||||
SmallVector<Constant *, 32> ShuffleMask(ReduxWidth, 0);
|
||||
Value *TmpVec = ValToReduce;
|
||||
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
|
||||
if (IsPairwiseReduction) {
|
||||
Value *LeftMask =
|
||||
createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
|
||||
Value *RightMask =
|
||||
createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
|
||||
|
||||
Value *LeftShuf = Builder.CreateShuffleVector(
|
||||
TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
|
||||
Value *RightShuf = Builder.CreateShuffleVector(
|
||||
TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
|
||||
"rdx.shuf.r");
|
||||
TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
|
||||
"bin.rdx");
|
||||
} else {
|
||||
Value *UpperHalf =
|
||||
createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
|
||||
Value *Shuf = Builder.CreateShuffleVector(
|
||||
TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
|
||||
TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
|
||||
}
|
||||
}
|
||||
|
||||
// The result is in the first element of the vector.
|
||||
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Recognize construction of vectors like
|
||||
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
|
||||
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
|
||||
@ -2312,18 +1981,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
|
||||
if (!BI)
|
||||
continue;
|
||||
|
||||
// Try to match and vectorize a horizontal reduction.
|
||||
HorizontalReduction HorRdx;
|
||||
if (ShouldVectorizeHor &&
|
||||
HorRdx.matchAssociativeReduction(P, BI, DL) &&
|
||||
HorRdx.tryToReduce(R, TTI)) {
|
||||
Changed = true;
|
||||
it = BB->begin();
|
||||
e = BB->end();
|
||||
continue;
|
||||
}
|
||||
|
||||
Value *Inst = BI->getOperand(0);
|
||||
Value *Inst = BI->getOperand(0);
|
||||
if (Inst == P)
|
||||
Inst = BI->getOperand(1);
|
||||
|
||||
@ -2333,28 +1991,10 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
|
||||
Changed = true;
|
||||
it = BB->begin();
|
||||
e = BB->end();
|
||||
continue;
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// Try to vectorize horizontal reductions feeding into a store.
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(it))
|
||||
if (BinaryOperator *BinOp =
|
||||
dyn_cast<BinaryOperator>(SI->getValueOperand())) {
|
||||
HorizontalReduction HorRdx;
|
||||
if (ShouldVectorizeHor &&
|
||||
((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
|
||||
HorRdx.tryToReduce(R, TTI)) ||
|
||||
tryToVectorize(BinOp, R))) {
|
||||
Changed = true;
|
||||
it = BB->begin();
|
||||
e = BB->end();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Try to vectorize trees that start at compare instructions.
|
||||
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
|
||||
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
|
||||
|
Reference in New Issue
Block a user