[X86] Allow atomic operations using immediates to avoid using a register

The only valid lowering of atomic stores in the X86 backend was mov from
register to memory. As a result, storing an immediate required a useless copy
of the immediate in a register. Now these can be compiled as a simple mov.

Similarily, adding/and-ing/or-ing/xor-ing an
immediate to an atomic location (but through an atomic_store/atomic_load,
not a fetch_whatever intrinsic) can now make use of an 'add $imm, x(%rip)'
instead of using a register. And the same applies to inc/dec.

This second point matches the first issue identified in
  http://llvm.org/bugs/show_bug.cgi?id=17281

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216980 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Robin Morisset 2014-09-02 22:16:29 +00:00
parent ba709096bc
commit 76b55cc4b1
4 changed files with 669 additions and 38 deletions

View File

@ -1008,23 +1008,47 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
// If this is a pseudo instruction, lower it.
switch (Desc->getOpcode()) {
case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
case X86::RELEASE_MOV8mi: Desc = UpdateOp(MI, II, X86::MOV8mi); break;
case X86::RELEASE_MOV16mi: Desc = UpdateOp(MI, II, X86::MOV16mi); break;
case X86::RELEASE_MOV32mi: Desc = UpdateOp(MI, II, X86::MOV32mi); break;
case X86::RELEASE_MOV64mi32: Desc = UpdateOp(MI, II, X86::MOV64mi32); break;
case X86::RELEASE_ADD8mi: Desc = UpdateOp(MI, II, X86::ADD8mi); break;
case X86::RELEASE_ADD32mi: Desc = UpdateOp(MI, II, X86::ADD32mi); break;
case X86::RELEASE_ADD64mi32: Desc = UpdateOp(MI, II, X86::ADD64mi32); break;
case X86::RELEASE_AND8mi: Desc = UpdateOp(MI, II, X86::AND8mi); break;
case X86::RELEASE_AND32mi: Desc = UpdateOp(MI, II, X86::AND32mi); break;
case X86::RELEASE_AND64mi32: Desc = UpdateOp(MI, II, X86::AND64mi32); break;
case X86::RELEASE_OR8mi: Desc = UpdateOp(MI, II, X86::OR8mi); break;
case X86::RELEASE_OR32mi: Desc = UpdateOp(MI, II, X86::OR32mi); break;
case X86::RELEASE_OR64mi32: Desc = UpdateOp(MI, II, X86::OR64mi32); break;
case X86::RELEASE_XOR8mi: Desc = UpdateOp(MI, II, X86::XOR8mi); break;
case X86::RELEASE_XOR32mi: Desc = UpdateOp(MI, II, X86::XOR32mi); break;
case X86::RELEASE_XOR64mi32: Desc = UpdateOp(MI, II, X86::XOR64mi32); break;
case X86::RELEASE_INC8m: Desc = UpdateOp(MI, II, X86::INC8m); break;
case X86::RELEASE_INC16m: Desc = UpdateOp(MI, II, X86::INC16m); break;
case X86::RELEASE_INC32m: Desc = UpdateOp(MI, II, X86::INC32m); break;
case X86::RELEASE_INC64m: Desc = UpdateOp(MI, II, X86::INC64m); break;
case X86::RELEASE_DEC8m: Desc = UpdateOp(MI, II, X86::DEC8m); break;
case X86::RELEASE_DEC16m: Desc = UpdateOp(MI, II, X86::DEC16m); break;
case X86::RELEASE_DEC32m: Desc = UpdateOp(MI, II, X86::DEC32m); break;
case X86::RELEASE_DEC64m: Desc = UpdateOp(MI, II, X86::DEC64m); break;
}

View File

@ -751,18 +751,88 @@ defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
TB, LOCK;
def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR8:$dst, (atomic_load_8 addr:$src))]>;
def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR16:$dst, (atomic_load_16 addr:$src))]>;
def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR32:$dst, (atomic_load_32 addr:$src))]>;
def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR64:$dst, (atomic_load_64 addr:$src))]>;
/* The following multiclass tries to make sure that in code like
* x.store (immediate op x.load(acquire), release)
* an operation directly on memory is generated instead of wasting a register.
* It is not automatic as atomic_store/load are only lowered to MOV instructions
* extremely late to prevent them from being accidentally reordered in the backend
* (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
*/
multiclass RELEASE_BINOP_MI<string op> {
def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
"#RELEASE_BINOP PSEUDO!",
[(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
(atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
// NAME#16 is not generated as 16-bit arithmetic instructions are considered
// costly and avoided as far as possible by this backend anyway
def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
"#RELEASE_BINOP PSEUDO!",
[(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
(atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
"#RELEASE_BINOP PSEUDO!",
[(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
(atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
}
defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
// Note: we don't deal with sub, because substractions of constants are
// optimized into additions before this code can run
multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
"#RELEASE_UNOP PSEUDO!",
[(atomic_store_8 addr:$dst, dag8)]>;
def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
"#RELEASE_UNOP PSEUDO!",
[(atomic_store_16 addr:$dst, dag16)]>;
def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
"#RELEASE_UNOP PSEUDO!",
[(atomic_store_32 addr:$dst, dag32)]>;
def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
"#RELEASE_UNOP PSEUDO!",
[(atomic_store_64 addr:$dst, dag64)]>;
}
defm RELEASE_INC : RELEASE_UNOP<
(add (atomic_load_8 addr:$dst), (i8 1)),
(add (atomic_load_16 addr:$dst), (i16 1)),
(add (atomic_load_32 addr:$dst), (i32 1)),
(add (atomic_load_64 addr:$dst), (i64 1))>;
defm RELEASE_DEC : RELEASE_UNOP<
(add (atomic_load_8 addr:$dst), (i8 -1)),
(add (atomic_load_16 addr:$dst), (i16 -1)),
(add (atomic_load_32 addr:$dst), (i32 -1)),
(add (atomic_load_64 addr:$dst), (i64 -1))>;
/*
TODO: These don't work because the type inference of TableGen fails.
TODO: find a way to fix it.
defm RELEASE_NEG : RELEASE_UNOP<
(ineg (atomic_load_8 addr:$dst)),
(ineg (atomic_load_16 addr:$dst)),
(ineg (atomic_load_32 addr:$dst)),
(ineg (atomic_load_64 addr:$dst))>;
defm RELEASE_NOT : RELEASE_UNOP<
(not (atomic_load_8 addr:$dst)),
(not (atomic_load_16 addr:$dst)),
(not (atomic_load_32 addr:$dst)),
(not (atomic_load_64 addr:$dst))>;
*/
def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
"#RELEASE_MOV PSEUDO !",
[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
"#RELEASE_MOV PSEUDO !",
[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
"#RELEASE_MOV PSEUDO !",
[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
"#RELEASE_MOV PSEUDO !",
[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
"#RELEASE_MOV PSEUDO!",
@ -777,11 +847,22 @@ def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
"#RELEASE_MOV PSEUDO!",
[(atomic_store_64 addr:$dst, GR64:$src)]>;
def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR8:$dst, (atomic_load_8 addr:$src))]>;
def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR16:$dst, (atomic_load_16 addr:$src))]>;
def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR32:$dst, (atomic_load_32 addr:$src))]>;
def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR64:$dst, (atomic_load_64 addr:$src))]>;
//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions.
//===----------------------------------------------------------------------===//
// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
// instruction selection into a branch sequence.
let Uses = [EFLAGS], usesCustomInserter = 1 in {

View File

@ -583,14 +583,38 @@ ReSimplify:
// Atomic load and store require a separate pseudo-inst because Acquire
// implies mayStore and Release implies mayLoad; fix these to regular MOV
// instructions here
case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
case X86::RELEASE_MOV8mi: OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
case X86::RELEASE_MOV16mi: OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
case X86::RELEASE_MOV32mi: OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
case X86::RELEASE_ADD8mi: OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
case X86::RELEASE_ADD32mi: OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
case X86::RELEASE_AND8mi: OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
case X86::RELEASE_AND32mi: OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
case X86::RELEASE_OR8mi: OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
case X86::RELEASE_OR32mi: OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
case X86::RELEASE_OR64mi32: OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
case X86::RELEASE_XOR8mi: OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
case X86::RELEASE_XOR32mi: OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
case X86::RELEASE_INC8m: OutMI.setOpcode(X86::INC8m); goto ReSimplify;
case X86::RELEASE_INC16m: OutMI.setOpcode(X86::INC16m); goto ReSimplify;
case X86::RELEASE_INC32m: OutMI.setOpcode(X86::INC32m); goto ReSimplify;
case X86::RELEASE_INC64m: OutMI.setOpcode(X86::INC64m); goto ReSimplify;
case X86::RELEASE_DEC8m: OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
case X86::RELEASE_DEC16m: OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
case X86::RELEASE_DEC32m: OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
case X86::RELEASE_DEC64m: OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
// We don't currently select the correct instruction form for instructions
// which have a short %eax, etc. form. Handle this by custom lowering, for

View File

@ -0,0 +1,502 @@
; RUN: llc < %s -march=x86-64 -verify-machineinstrs | FileCheck %s --check-prefix X64
; RUN: llc < %s -march=x86 -verify-machineinstrs | FileCheck %s --check-prefix X32
; This file checks that atomic (non-seq_cst) stores of immediate values are
; done in one mov instruction and not 2. More precisely, it makes sure that the
; immediate is not first copied uselessly into a register.
; Similarily, it checks that a binary operation of an immediate with an atomic
; variable that is stored back in that variable is done as a single instruction.
; For example: x.store(42 + x.load(memory_order_acquire), memory_order_release)
; should be just an add instruction, instead of loading x into a register, doing
; an add and storing the result back.
; The binary operations supported are currently add, and, or, xor.
; sub is not supported because they are translated by an addition of the
; negated immediate.
; Finally, we also check the same kind of pattern for inc/dec
; seq_cst stores are left as (lock) xchgl, but we try to check every other
; attribute at least once.
; Please note that these operations do not require the lock prefix: only
; sequentially consistent stores require this kind of protection on X86.
; And even for seq_cst operations, llvm uses the xchg instruction which has
; an implicit lock prefix, so making it explicit is not required.
define void @store_atomic_imm_8(i8* %p) {
; X64-LABEL: store_atomic_imm_8
; X64: movb
; X64-NOT: movb
; X32-LABEL: store_atomic_imm_8
; X32: movb
; X32-NOT: movb
store atomic i8 42, i8* %p release, align 1
ret void
}
define void @store_atomic_imm_16(i16* %p) {
; X64-LABEL: store_atomic_imm_16
; X64: movw
; X64-NOT: movw
; X32-LABEL: store_atomic_imm_16
; X32: movw
; X32-NOT: movw
store atomic i16 42, i16* %p monotonic, align 2
ret void
}
define void @store_atomic_imm_32(i32* %p) {
; X64-LABEL: store_atomic_imm_32
; X64: movl
; X64-NOT: movl
; On 32 bits, there is an extra movl for each of those functions
; (probably for alignment reasons).
; X32-LABEL: store_atomic_imm_32
; X32: movl 4(%esp), %eax
; X32: movl
; X32-NOT: movl
store atomic i32 42, i32* %p release, align 4
ret void
}
define void @store_atomic_imm_64(i64* %p) {
; X64-LABEL: store_atomic_imm_64
; X64: movq
; X64-NOT: movq
; These are implemented with a CAS loop on 32 bit architectures, and thus
; cannot be optimized in the same way as the others.
; X32-LABEL: store_atomic_imm_64
; X32: cmpxchg8b
store atomic i64 42, i64* %p release, align 8
ret void
}
; If an immediate is too big to fit in 32 bits, it cannot be store in one mov,
; even on X64, one must use movabsq that can only target a register.
define void @store_atomic_imm_64_big(i64* %p) {
; X64-LABEL: store_atomic_imm_64_big
; X64: movabsq
; X64: movq
store atomic i64 100000000000, i64* %p monotonic, align 8
ret void
}
; It would be incorrect to replace a lock xchgl by a movl
define void @store_atomic_imm_32_seq_cst(i32* %p) {
; X64-LABEL: store_atomic_imm_32_seq_cst
; X64: xchgl
; X32-LABEL: store_atomic_imm_32_seq_cst
; X32: xchgl
store atomic i32 42, i32* %p seq_cst, align 4
ret void
}
; ----- ADD -----
define void @add_8(i8* %p) {
; X64-LABEL: add_8
; X64-NOT: lock
; X64: addb
; X64-NOT: movb
; X32-LABEL: add_8
; X32-NOT: lock
; X32: addb
; X32-NOT: movb
%1 = load atomic i8* %p seq_cst, align 1
%2 = add i8 %1, 2
store atomic i8 %2, i8* %p release, align 1
ret void
}
define void @add_16(i16* %p) {
; Currently the transformation is not done on 16 bit accesses, as the backend
; treat 16 bit arithmetic as expensive on X86/X86_64.
; X64-LABEL: add_16
; X64-NOT: addw
; X32-LABEL: add_16
; X32-NOT: addw
%1 = load atomic i16* %p acquire, align 2
%2 = add i16 %1, 2
store atomic i16 %2, i16* %p release, align 2
ret void
}
define void @add_32(i32* %p) {
; X64-LABEL: add_32
; X64-NOT: lock
; X64: addl
; X64-NOT: movl
; X32-LABEL: add_32
; X32-NOT: lock
; X32: addl
; X32-NOT: movl
%1 = load atomic i32* %p acquire, align 4
%2 = add i32 %1, 2
store atomic i32 %2, i32* %p monotonic, align 4
ret void
}
define void @add_64(i64* %p) {
; X64-LABEL: add_64
; X64-NOT: lock
; X64: addq
; X64-NOT: movq
; We do not check X86-32 as it cannot do 'addq'.
; X32-LABEL: add_64
%1 = load atomic i64* %p acquire, align 8
%2 = add i64 %1, 2
store atomic i64 %2, i64* %p release, align 8
ret void
}
define void @add_32_seq_cst(i32* %p) {
; X64-LABEL: add_32_seq_cst
; X64: xchgl
; X32-LABEL: add_32_seq_cst
; X32: xchgl
%1 = load atomic i32* %p monotonic, align 4
%2 = add i32 %1, 2
store atomic i32 %2, i32* %p seq_cst, align 4
ret void
}
; ----- AND -----
define void @and_8(i8* %p) {
; X64-LABEL: and_8
; X64-NOT: lock
; X64: andb
; X64-NOT: movb
; X32-LABEL: and_8
; X32-NOT: lock
; X32: andb
; X32-NOT: movb
%1 = load atomic i8* %p monotonic, align 1
%2 = and i8 %1, 2
store atomic i8 %2, i8* %p release, align 1
ret void
}
define void @and_16(i16* %p) {
; Currently the transformation is not done on 16 bit accesses, as the backend
; treat 16 bit arithmetic as expensive on X86/X86_64.
; X64-LABEL: and_16
; X64-NOT: andw
; X32-LABEL: and_16
; X32-NOT: andw
%1 = load atomic i16* %p acquire, align 2
%2 = and i16 %1, 2
store atomic i16 %2, i16* %p release, align 2
ret void
}
define void @and_32(i32* %p) {
; X64-LABEL: and_32
; X64-NOT: lock
; X64: andl
; X64-NOT: movl
; X32-LABEL: and_32
; X32-NOT: lock
; X32: andl
; X32-NOT: movl
%1 = load atomic i32* %p acquire, align 4
%2 = and i32 %1, 2
store atomic i32 %2, i32* %p release, align 4
ret void
}
define void @and_64(i64* %p) {
; X64-LABEL: and_64
; X64-NOT: lock
; X64: andq
; X64-NOT: movq
; We do not check X86-32 as it cannot do 'andq'.
; X32-LABEL: and_64
%1 = load atomic i64* %p acquire, align 8
%2 = and i64 %1, 2
store atomic i64 %2, i64* %p release, align 8
ret void
}
define void @and_32_seq_cst(i32* %p) {
; X64-LABEL: and_32_seq_cst
; X64: xchgl
; X32-LABEL: and_32_seq_cst
; X32: xchgl
%1 = load atomic i32* %p monotonic, align 4
%2 = and i32 %1, 2
store atomic i32 %2, i32* %p seq_cst, align 4
ret void
}
; ----- OR -----
define void @or_8(i8* %p) {
; X64-LABEL: or_8
; X64-NOT: lock
; X64: orb
; X64-NOT: movb
; X32-LABEL: or_8
; X32-NOT: lock
; X32: orb
; X32-NOT: movb
%1 = load atomic i8* %p acquire, align 1
%2 = or i8 %1, 2
store atomic i8 %2, i8* %p release, align 1
ret void
}
define void @or_16(i16* %p) {
; X64-LABEL: or_16
; X64-NOT: orw
; X32-LABEL: or_16
; X32-NOT: orw
%1 = load atomic i16* %p acquire, align 2
%2 = or i16 %1, 2
store atomic i16 %2, i16* %p release, align 2
ret void
}
define void @or_32(i32* %p) {
; X64-LABEL: or_32
; X64-NOT: lock
; X64: orl
; X64-NOT: movl
; X32-LABEL: or_32
; X32-NOT: lock
; X32: orl
; X32-NOT: movl
%1 = load atomic i32* %p acquire, align 4
%2 = or i32 %1, 2
store atomic i32 %2, i32* %p release, align 4
ret void
}
define void @or_64(i64* %p) {
; X64-LABEL: or_64
; X64-NOT: lock
; X64: orq
; X64-NOT: movq
; We do not check X86-32 as it cannot do 'orq'.
; X32-LABEL: or_64
%1 = load atomic i64* %p acquire, align 8
%2 = or i64 %1, 2
store atomic i64 %2, i64* %p release, align 8
ret void
}
define void @or_32_seq_cst(i32* %p) {
; X64-LABEL: or_32_seq_cst
; X64: xchgl
; X32-LABEL: or_32_seq_cst
; X32: xchgl
%1 = load atomic i32* %p monotonic, align 4
%2 = or i32 %1, 2
store atomic i32 %2, i32* %p seq_cst, align 4
ret void
}
; ----- XOR -----
define void @xor_8(i8* %p) {
; X64-LABEL: xor_8
; X64-NOT: lock
; X64: xorb
; X64-NOT: movb
; X32-LABEL: xor_8
; X32-NOT: lock
; X32: xorb
; X32-NOT: movb
%1 = load atomic i8* %p acquire, align 1
%2 = xor i8 %1, 2
store atomic i8 %2, i8* %p release, align 1
ret void
}
define void @xor_16(i16* %p) {
; X64-LABEL: xor_16
; X64-NOT: xorw
; X32-LABEL: xor_16
; X32-NOT: xorw
%1 = load atomic i16* %p acquire, align 2
%2 = xor i16 %1, 2
store atomic i16 %2, i16* %p release, align 2
ret void
}
define void @xor_32(i32* %p) {
; X64-LABEL: xor_32
; X64-NOT: lock
; X64: xorl
; X64-NOT: movl
; X32-LABEL: xor_32
; X32-NOT: lock
; X32: xorl
; X32-NOT: movl
%1 = load atomic i32* %p acquire, align 4
%2 = xor i32 %1, 2
store atomic i32 %2, i32* %p release, align 4
ret void
}
define void @xor_64(i64* %p) {
; X64-LABEL: xor_64
; X64-NOT: lock
; X64: xorq
; X64-NOT: movq
; We do not check X86-32 as it cannot do 'xorq'.
; X32-LABEL: xor_64
%1 = load atomic i64* %p acquire, align 8
%2 = xor i64 %1, 2
store atomic i64 %2, i64* %p release, align 8
ret void
}
define void @xor_32_seq_cst(i32* %p) {
; X64-LABEL: xor_32_seq_cst
; X64: xchgl
; X32-LABEL: xor_32_seq_cst
; X32: xchgl
%1 = load atomic i32* %p monotonic, align 4
%2 = xor i32 %1, 2
store atomic i32 %2, i32* %p seq_cst, align 4
ret void
}
; ----- INC -----
define void @inc_8(i8* %p) {
; X64-LABEL: inc_8
; X64-NOT: lock
; X64: incb
; X64-NOT: movb
; X32-LABEL: inc_8
; X32-NOT: lock
; X32: incb
; X32-NOT: movb
%1 = load atomic i8* %p seq_cst, align 1
%2 = add i8 %1, 1
store atomic i8 %2, i8* %p release, align 1
ret void
}
define void @inc_16(i16* %p) {
; Currently the transformation is not done on 16 bit accesses, as the backend
; treat 16 bit arithmetic as expensive on X86/X86_64.
; X64-LABEL: inc_16
; X64-NOT: incw
; X32-LABEL: inc_16
; X32-NOT: incw
%1 = load atomic i16* %p acquire, align 2
%2 = add i16 %1, 1
store atomic i16 %2, i16* %p release, align 2
ret void
}
define void @inc_32(i32* %p) {
; X64-LABEL: inc_32
; X64-NOT: lock
; X64: incl
; X64-NOT: movl
; X32-LABEL: inc_32
; X32-NOT: lock
; X32: incl
; X32-NOT: movl
%1 = load atomic i32* %p acquire, align 4
%2 = add i32 %1, 1
store atomic i32 %2, i32* %p monotonic, align 4
ret void
}
define void @inc_64(i64* %p) {
; X64-LABEL: inc_64
; X64-NOT: lock
; X64: incq
; X64-NOT: movq
; We do not check X86-32 as it cannot do 'incq'.
; X32-LABEL: inc_64
%1 = load atomic i64* %p acquire, align 8
%2 = add i64 %1, 1
store atomic i64 %2, i64* %p release, align 8
ret void
}
define void @inc_32_seq_cst(i32* %p) {
; X64-LABEL: inc_32_seq_cst
; X64: xchgl
; X32-LABEL: inc_32_seq_cst
; X32: xchgl
%1 = load atomic i32* %p monotonic, align 4
%2 = add i32 %1, 1
store atomic i32 %2, i32* %p seq_cst, align 4
ret void
}
; ----- DEC -----
define void @dec_8(i8* %p) {
; X64-LABEL: dec_8
; X64-NOT: lock
; X64: decb
; X64-NOT: movb
; X32-LABEL: dec_8
; X32-NOT: lock
; X32: decb
; X32-NOT: movb
%1 = load atomic i8* %p seq_cst, align 1
%2 = sub i8 %1, 1
store atomic i8 %2, i8* %p release, align 1
ret void
}
define void @dec_16(i16* %p) {
; Currently the transformation is not done on 16 bit accesses, as the backend
; treat 16 bit arithmetic as expensive on X86/X86_64.
; X64-LABEL: dec_16
; X64-NOT: decw
; X32-LABEL: dec_16
; X32-NOT: decw
%1 = load atomic i16* %p acquire, align 2
%2 = sub i16 %1, 1
store atomic i16 %2, i16* %p release, align 2
ret void
}
define void @dec_32(i32* %p) {
; X64-LABEL: dec_32
; X64-NOT: lock
; X64: decl
; X64-NOT: movl
; X32-LABEL: dec_32
; X32-NOT: lock
; X32: decl
; X32-NOT: movl
%1 = load atomic i32* %p acquire, align 4
%2 = sub i32 %1, 1
store atomic i32 %2, i32* %p monotonic, align 4
ret void
}
define void @dec_64(i64* %p) {
; X64-LABEL: dec_64
; X64-NOT: lock
; X64: decq
; X64-NOT: movq
; We do not check X86-32 as it cannot do 'decq'.
; X32-LABEL: dec_64
%1 = load atomic i64* %p acquire, align 8
%2 = sub i64 %1, 1
store atomic i64 %2, i64* %p release, align 8
ret void
}
define void @dec_32_seq_cst(i32* %p) {
; X64-LABEL: dec_32_seq_cst
; X64: xchgl
; X32-LABEL: dec_32_seq_cst
; X32: xchgl
%1 = load atomic i32* %p monotonic, align 4
%2 = sub i32 %1, 1
store atomic i32 %2, i32* %p seq_cst, align 4
ret void
}