Work in progress.

Start cleaning up MergeFunctions to look more like the rest of LLVM. The
primary change here is to move the methods responsible for comparison into the
new FunctionComparator object. Some comments added. There's more to do.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110021 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nick Lewycky 2010-08-02 05:23:03 +00:00
parent 1d17d199a4
commit 78d4330fd8

View File

@ -31,13 +31,8 @@
// the object they belong to. However, as long as it's only used for a lookup // the object they belong to. However, as long as it's only used for a lookup
// and call, this is irrelevant, and we'd like to fold such implementations. // and call, this is irrelevant, and we'd like to fold such implementations.
// //
// * use SCC to cut down on pair-wise comparisons and solve larger cycles. // * switch from n^2 pair-wise comparisons to an n-way comparison for each
// // bucket.
// The current implementation loops over a pair-wise comparison of all
// functions in the program where the two functions in the pair are treated as
// assumed to be equal until proven otherwise. We could both use fewer
// comparisons and optimize more complex cases if we used strongly connected
// components of the call graph.
// //
// * be smarter about bitcast. // * be smarter about bitcast.
// //
@ -47,11 +42,12 @@
// other doesn't. We should learn to peer through bitcasts without imposing bad // other doesn't. We should learn to peer through bitcasts without imposing bad
// performance properties. // performance properties.
// //
// * don't emit aliases for Mach-O. // * emit aliases for ELF
// //
// Mach-O doesn't support aliases which means that we must avoid introducing // ELF supports symbol aliases which are represented with GlobalAlias in the
// them in the bitcode on architectures which don't support them, such as // Module, and we could emit them in the case that the addresses don't need to
// Mac OSX. There's a few approaches to this problem; // be distinct. The problem is that not all object formats support equivalent
// functionality. There's a few approaches to this problem;
// a) teach codegen to lower global aliases to thunks on platforms which don't // a) teach codegen to lower global aliases to thunks on platforms which don't
// support them. // support them.
// b) always emit thunks, and create a separate thunk-to-alias pass which // b) always emit thunks, and create a separate thunk-to-alias pass which
@ -85,28 +81,16 @@ using namespace llvm;
STATISTIC(NumFunctionsMerged, "Number of functions merged"); STATISTIC(NumFunctionsMerged, "Number of functions merged");
namespace { namespace {
class MergeFunctions : public ModulePass { /// MergeFunctions finds functions which will generate identical machine code,
public: /// by considering all pointer types to be equivalent. Once identified,
/// MergeFunctions will fold them by replacing a call to one to a call to a
/// bitcast of the other.
///
struct MergeFunctions : public ModulePass {
static char ID; // Pass identification, replacement for typeid static char ID; // Pass identification, replacement for typeid
MergeFunctions() : ModulePass(&ID) {} MergeFunctions() : ModulePass(&ID) {}
bool runOnModule(Module &M); bool runOnModule(Module &M);
private:
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
const GetElementPtrInst *GEP2);
bool equals(const BasicBlock *BB1, const BasicBlock *BB2);
bool equals(const Function *F, const Function *G);
bool compare(const Value *V1, const Value *V2);
const Function *LHS, *RHS;
typedef DenseMap<const Value *, unsigned long> IDMap;
IDMap Map;
DenseMap<const Function *, IDMap> Domains;
DenseMap<const Function *, unsigned long> DomainCount;
TargetData *TD;
}; };
} }
@ -120,8 +104,60 @@ ModulePass *llvm::createMergeFunctionsPass() {
// ===----------------------------------------------------------------------=== // ===----------------------------------------------------------------------===
// Comparison of functions // Comparison of functions
// ===----------------------------------------------------------------------=== // ===----------------------------------------------------------------------===
namespace {
class FunctionComparator {
public:
FunctionComparator(TargetData *TD, Function *F1, Function *F2)
: TD(TD), F1(F1), F2(F2) {}
static unsigned long hash(const Function *F) { // Compare - test whether the two functions have equivalent behaviour.
bool Compare();
private:
// Compare - test whether two basic blocks have equivalent behaviour.
bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
// getDomain - a value's domain is its parent function if it is specific to a
// function, or NULL otherwise.
const Function *getDomain(const Value *V) const;
// Enumerate - Assign or look up previously assigned numbers for the two
// values, and return whether the numbers are equal. Numbers are assigned in
// the order visited.
bool Enumerate(const Value *V1, const Value *V2);
// isEquivalentOperation - Compare two Instructions for equivalence, similar
// to Instruction::isSameOperationAs but with modifications to the type
// comparison.
bool isEquivalentOperation(const Instruction *I1,
const Instruction *I2) const;
// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
const GetElementPtrInst *GEP2) {
return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
}
// isEquivalentType - Compare two Types, treating all pointer types as equal.
bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
// The two functions undergoing comparison.
Function *F1, *F2;
TargetData *TD;
typedef DenseMap<const Value *, unsigned long> IDMap;
IDMap Map;
DenseMap<const Function *, IDMap> Domains;
DenseMap<const Function *, unsigned long> DomainCount;
};
}
/// Compute a number which is guaranteed to be equal for two equivalent
/// functions, but is very likely to be different for different functions. This
/// needs to be computed as efficiently as possible.
static unsigned long ProfileFunction(const Function *F) {
const FunctionType *FTy = F->getFunctionType(); const FunctionType *FTy = F->getFunctionType();
FoldingSetNodeID ID; FoldingSetNodeID ID;
@ -137,7 +173,8 @@ static unsigned long hash(const Function *F) {
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard /// isEquivalentType - any two pointers are equivalent. Otherwise, standard
/// type equivalence rules apply. /// type equivalence rules apply.
static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { bool FunctionComparator::isEquivalentType(const Type *Ty1,
const Type *Ty2) const {
if (Ty1 == Ty2) if (Ty1 == Ty2)
return true; return true;
if (Ty1->getTypeID() != Ty2->getTypeID()) if (Ty1->getTypeID() != Ty2->getTypeID())
@ -234,8 +271,8 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
/// isEquivalentOperation - determine whether the two operations are the same /// isEquivalentOperation - determine whether the two operations are the same
/// except that pointer-to-A and pointer-to-B are equivalent. This should be /// except that pointer-to-A and pointer-to-B are equivalent. This should be
/// kept in sync with Instruction::isSameOperationAs. /// kept in sync with Instruction::isSameOperationAs.
static bool bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
isEquivalentOperation(const Instruction *I1, const Instruction *I2) { const Instruction *I2) const {
if (I1->getOpcode() != I2->getOpcode() || if (I1->getOpcode() != I2->getOpcode() ||
I1->getNumOperands() != I2->getNumOperands() || I1->getNumOperands() != I2->getNumOperands() ||
!isEquivalentType(I1->getType(), I2->getType()) || !isEquivalentType(I1->getType(), I2->getType()) ||
@ -287,18 +324,15 @@ isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
return true; return true;
} }
bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1, /// isEquivalentGEP - determine whether two GEP operations perform the same
const GetElementPtrInst *GEP2) { /// underlying arithmetic.
bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
const GEPOperator *GEP2) {
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
SmallVector<Value *, 8> Indices1, Indices2; SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
for (GetElementPtrInst::const_op_iterator I = GEP1->idx_begin(), SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
E = GEP1->idx_end(); I != E; ++I) {
Indices1.push_back(*I);
}
for (GetElementPtrInst::const_op_iterator I = GEP2->idx_begin(),
E = GEP2->idx_end(); I != E; ++I) {
Indices2.push_back(*I);
}
uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
Indices1.data(), Indices1.size()); Indices1.data(), Indices1.size());
uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
@ -306,7 +340,6 @@ bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1,
return Offset1 == Offset2; return Offset1 == Offset2;
} }
// Equivalent types aren't enough.
if (GEP1->getPointerOperand()->getType() != if (GEP1->getPointerOperand()->getType() !=
GEP2->getPointerOperand()->getType()) GEP2->getPointerOperand()->getType())
return false; return false;
@ -315,19 +348,38 @@ bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1,
return false; return false;
for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
if (!compare(GEP1->getOperand(i), GEP2->getOperand(i))) if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
return false; return false;
} }
return true; return true;
} }
bool MergeFunctions::compare(const Value *V1, const Value *V2) { /// getDomain - a value's domain is its parent function if it is specific to a
if (V1 == LHS || V1 == RHS) /// function, or NULL otherwise.
if (V2 == LHS || V2 == RHS) const Function *FunctionComparator::getDomain(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V)) {
return A->getParent();
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
return BB->getParent();
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
return I->getParent()->getParent();
}
return NULL;
}
/// Enumerate - Compare two values used by the two functions under pair-wise
/// comparison. If this is the first time the values are seen, they're added to
/// the mapping so that we will detect mismatches on next use.
bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
// Check for function @f1 referring to itself and function @f2 referring to
// itself, or referring to each other, or both referring to either of them.
// They're all equivalent if the two functions are otherwise equivalent.
if (V1 == F1 || V1 == F2)
if (V2 == F1 || V2 == F2)
return true; return true;
// TODO: constant expressions in terms of LHS and RHS // TODO: constant expressions with GEP or references to F1 or F2.
if (isa<Constant>(V1)) if (isa<Constant>(V1))
return V1 == V2; return V1 == V2;
@ -340,27 +392,12 @@ bool MergeFunctions::compare(const Value *V1, const Value *V2) {
// We enumerate constants globally and arguments, basic blocks or // We enumerate constants globally and arguments, basic blocks or
// instructions within the function they belong to. // instructions within the function they belong to.
const Function *Domain1 = NULL; const Function *Domain1 = getDomain(V1);
if (const Argument *A = dyn_cast<Argument>(V1)) { const Function *Domain2 = getDomain(V2);
Domain1 = A->getParent();
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V1)) {
Domain1 = BB->getParent();
} else if (const Instruction *I = dyn_cast<Instruction>(V1)) {
Domain1 = I->getParent()->getParent();
}
const Function *Domain2 = NULL;
if (const Argument *A = dyn_cast<Argument>(V2)) {
Domain2 = A->getParent();
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V2)) {
Domain2 = BB->getParent();
} else if (const Instruction *I = dyn_cast<Instruction>(V2)) {
Domain2 = I->getParent()->getParent();
}
// The domains have to either be both NULL, or F1, F2.
if (Domain1 != Domain2) if (Domain1 != Domain2)
if (Domain1 != LHS && Domain1 != RHS) if (Domain1 != F1 && Domain1 != F2)
if (Domain2 != LHS && Domain2 != RHS)
return false; return false;
IDMap &Map1 = Domains[Domain1]; IDMap &Map1 = Domains[Domain1];
@ -376,116 +413,114 @@ bool MergeFunctions::compare(const Value *V1, const Value *V2) {
return ID1 == ID2; return ID1 == ID2;
} }
bool MergeFunctions::equals(const BasicBlock *BB1, const BasicBlock *BB2) { // Compare - test whether two basic blocks have equivalent behaviour.
BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end(); bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end(); BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
do { do {
if (!compare(FI, GI)) if (!Enumerate(F1I, F2I))
return false; return false;
if (isa<GetElementPtrInst>(FI) && isa<GetElementPtrInst>(GI)) { if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
const GetElementPtrInst *GEP1 = cast<GetElementPtrInst>(FI); const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
const GetElementPtrInst *GEP2 = cast<GetElementPtrInst>(GI); if (!GEP2)
return false;
if (!compare(GEP1->getPointerOperand(), GEP2->getPointerOperand())) if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
return false; return false;
if (!isEquivalentGEP(GEP1, GEP2)) if (!isEquivalentGEP(GEP1, GEP2))
return false; return false;
} else { } else {
if (!isEquivalentOperation(FI, GI)) if (!isEquivalentOperation(F1I, F2I))
return false; return false;
for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { assert(F1I->getNumOperands() == F2I->getNumOperands());
Value *OpF = FI->getOperand(i); for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
Value *OpG = GI->getOperand(i); Value *OpF1 = F1I->getOperand(i);
Value *OpF2 = F2I->getOperand(i);
if (!compare(OpF, OpG)) if (!Enumerate(OpF1, OpF2))
return false; return false;
if (OpF->getValueID() != OpG->getValueID() || if (OpF1->getValueID() != OpF2->getValueID() ||
!isEquivalentType(OpF->getType(), OpG->getType())) !isEquivalentType(OpF1->getType(), OpF2->getType()))
return false; return false;
} }
} }
++FI, ++GI; ++F1I, ++F2I;
} while (FI != FE && GI != GE); } while (F1I != F1E && F2I != F2E);
return FI == FE && GI == GE; return F1I == F1E && F2I == F2E;
} }
bool MergeFunctions::equals(const Function *F, const Function *G) { bool FunctionComparator::Compare() {
// We need to recheck everything, but check the things that weren't included // We need to recheck everything, but check the things that weren't included
// in the hash first. // in the hash first.
if (F->getAttributes() != G->getAttributes()) if (F1->getAttributes() != F2->getAttributes())
return false; return false;
if (F->hasGC() != G->hasGC()) if (F1->hasGC() != F2->hasGC())
return false; return false;
if (F->hasGC() && F->getGC() != G->getGC()) if (F1->hasGC() && F1->getGC() != F2->getGC())
return false; return false;
if (F->hasSection() != G->hasSection()) if (F1->hasSection() != F2->hasSection())
return false; return false;
if (F->hasSection() && F->getSection() != G->getSection()) if (F1->hasSection() && F1->getSection() != F2->getSection())
return false; return false;
if (F->isVarArg() != G->isVarArg()) if (F1->isVarArg() != F2->isVarArg())
return false; return false;
// TODO: if it's internal and only used in direct calls, we could handle this // TODO: if it's internal and only used in direct calls, we could handle this
// case too. // case too.
if (F->getCallingConv() != G->getCallingConv()) if (F1->getCallingConv() != F2->getCallingConv())
return false; return false;
if (!isEquivalentType(F->getFunctionType(), G->getFunctionType())) if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
return false; return false;
assert(F->arg_size() == G->arg_size() && assert(F1->arg_size() == F2->arg_size() &&
"Identical functions have a different number of args."); "Identical functions have a different number of args.");
LHS = F;
RHS = G;
// Visit the arguments so that they get enumerated in the order they're // Visit the arguments so that they get enumerated in the order they're
// passed in. // passed in.
for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(), for (Function::const_arg_iterator f1i = F1->arg_begin(),
fe = F->arg_end(); fi != fe; ++fi, ++gi) { f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
if (!compare(fi, gi)) if (!Enumerate(f1i, f2i))
llvm_unreachable("Arguments repeat"); llvm_unreachable("Arguments repeat");
} }
SmallVector<const BasicBlock *, 8> FBBs, GBBs; // We need to do an ordered walk since the actual ordering of the blocks in
SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F. // the linked list is immaterial. Our walk starts at the entry block for both
FBBs.push_back(&F->getEntryBlock()); // functions, then takes each block from each terminator in order. As an
GBBs.push_back(&G->getEntryBlock()); // artifact, this also means that unreachable blocks are ignored.
VisitedBBs.insert(FBBs[0]); SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
while (!FBBs.empty()) { SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
const BasicBlock *FBB = FBBs.pop_back_val(); F1BBs.push_back(&F1->getEntryBlock());
const BasicBlock *GBB = GBBs.pop_back_val(); F2BBs.push_back(&F2->getEntryBlock());
if (!compare(FBB, GBB) || !equals(FBB, GBB)) { VisitedBBs.insert(F1BBs[0]);
Domains.clear(); while (!F1BBs.empty()) {
DomainCount.clear(); const BasicBlock *F1BB = F1BBs.pop_back_val();
const BasicBlock *F2BB = F2BBs.pop_back_val();
if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
return false; return false;
} const TerminatorInst *F1TI = F1BB->getTerminator();
const TerminatorInst *FTI = FBB->getTerminator(); const TerminatorInst *F2TI = F2BB->getTerminator();
const TerminatorInst *GTI = GBB->getTerminator(); assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
assert(FTI->getNumSuccessors() == GTI->getNumSuccessors()); for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
for (unsigned i = 0, e = FTI->getNumSuccessors(); i != e; ++i) { if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
if (!VisitedBBs.insert(FTI->getSuccessor(i)))
continue; continue;
FBBs.push_back(FTI->getSuccessor(i)); F1BBs.push_back(F1TI->getSuccessor(i));
GBBs.push_back(GTI->getSuccessor(i)); F2BBs.push_back(F2TI->getSuccessor(i));
} }
} }
Domains.clear();
DomainCount.clear();
return true; return true;
} }
@ -720,10 +755,10 @@ bool MergeFunctions::runOnModule(Module &M) {
if (F->isDeclaration()) if (F->isDeclaration())
continue; continue;
FnMap[hash(F)].push_back(F); FnMap[ProfileFunction(F)].push_back(F);
} }
TD = getAnalysisIfAvailable<TargetData>(); TargetData *TD = getAnalysisIfAvailable<TargetData>();
bool LocalChanged; bool LocalChanged;
do { do {
@ -736,7 +771,7 @@ bool MergeFunctions::runOnModule(Module &M) {
for (int i = 0, e = FnVec.size(); i != e; ++i) { for (int i = 0, e = FnVec.size(); i != e; ++i) {
for (int j = i + 1; j != e; ++j) { for (int j = i + 1; j != e; ++j) {
bool isEqual = equals(FnVec[i], FnVec[j]); bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare();
DEBUG(dbgs() << " " << FnVec[i]->getName() DEBUG(dbgs() << " " << FnVec[i]->getName()
<< (isEqual ? " == " : " != ") << (isEqual ? " == " : " != ")