- Replace ConstantPointerRef usage with GlobalValue usage
- Minimize redundant isa<GlobalValue> usage
- Correct isa<Constant> for GlobalValue subclass


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14927 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2004-07-17 23:47:01 +00:00
parent 31c0da4483
commit 7970396014
2 changed files with 39 additions and 46 deletions

View File

@ -381,6 +381,7 @@ std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
}
}
/// @brief Internal constant writer.
static void WriteConstantInt(std::ostream &Out, const Constant *CV,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
@ -493,9 +494,6 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
} else if (isa<ConstantPointerNull>(CV)) {
Out << "null";
} else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
WriteAsOperandInternal(Out, PR->getValue(), true, TypeTable, Machine);
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName() << " (";
@ -527,12 +525,13 @@ static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
std::map<const Type*, std::string> &TypeTable,
SlotMachine *Machine) {
Out << ' ';
if (PrintName && V->hasName()) {
if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
Out << getLLVMName(V->getName());
} else {
if (const Constant *CV = dyn_cast<Constant>(V)) {
else {
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV))
WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
} else {
else {
int Slot;
if (Machine) {
Slot = Machine->getSlot(V);
@ -764,8 +763,14 @@ void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
Out << (GV->isConstant() ? "constant " : "global ");
printType(GV->getType()->getElementType());
if (GV->hasInitializer())
if (GV->hasInitializer()) {
Constant* C = cast<Constant>(GV->getInitializer());
assert(C && "GlobalVar initializer isn't constant?");
if (isa<GlobalValue>(C))
writeOperand(GV->getInitializer(), false, true);
else
writeOperand(GV->getInitializer(), false, false);
}
printInfoComment(*GV);
Out << "\n";
@ -794,8 +799,9 @@ void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
for (; VI != VE; ++VI) {
const Value *V = VI->second;
if (const Constant *CPV = dyn_cast<Constant>(V)) {
const Value* V = VI->second;
const Constant *CPV = dyn_cast<Constant>(V) ;
if (CPV && !isa<GlobalValue>(V)) {
printConstant(CPV);
}
}
@ -1162,12 +1168,6 @@ void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
void Constant::print(std::ostream &o) const {
if (this == 0) { o << "<null> constant value\n"; return; }
// Handle CPR's special, because they have context information...
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
CPR->getValue()->print(o); // Print as a global value, with context info.
return;
}
o << ' ' << getType()->getDescription() << ' ';
std::map<const Type *, std::string> TypeTable;
@ -1347,10 +1347,6 @@ int SlotMachine::getSlot(const Value *V) {
// Check for uninitialized state and do lazy initialization
this->initialize();
// Do not number CPR's at all. They are an abomination
if ( const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(V) )
V = CPR->getValue() ;
// Get the type of the value
const Type* VTy = V->getType();
@ -1593,8 +1589,8 @@ unsigned SlotMachine::insertValue(const Value *V ) {
SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, C = Constant, T = Type, F = Function, o = other
SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Constant>(V) ? 'C' :
(isa<Function>(V) ? 'F' : 'o'))));
SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
(isa<Constant>(V) ? 'C' : 'o'))));
SC_DEBUG("]\n");
return DestSlot;
}

View File

@ -486,7 +486,7 @@ ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
static DirectFPRules <ConstantFP , double , &Type::DoubleTy> DoubleR;
if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
isa<ConstantPointerRef>(V1) || isa<ConstantPointerRef>(V2))
isa<GlobalValue>(V1) || isa<GlobalValue>(V2))
return EmptyR;
switch (V1->getType()->getTypeID()) {
@ -525,12 +525,12 @@ Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
if (V->getType() == DestTy) return (Constant*)V;
// Cast of a global address to boolean is always true.
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V))
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
if (DestTy == Type::BoolTy)
// FIXME: When we support 'external weak' references, we have to prevent
// this transformation from happening. In the meantime we avoid folding
// any cast of an external symbol.
if (!CPR->getValue()->isExternal())
if (!GV->isExternal())
return ConstantBool::True;
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
@ -624,15 +624,15 @@ static int IdxCompare(Constant *C1, Constant *C2) {
/// evaluateRelation - This function determines if there is anything we can
/// decide about the two constants provided. This doesn't need to handle simple
/// things like integer comparisons, but should instead handle ConstantExpr's
/// and ConstantPointerRef's. If we can determine that the two constants have a
/// things like integer comparisons, but should instead handle ConstantExprs
/// and GlobalValuess. If we can determine that the two constants have a
/// particular relation to each other, we should return the corresponding SetCC
/// code, otherwise return Instruction::BinaryOpsEnd.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two. We consider simple
/// constants (like ConstantInt) to be the simplest, followed by
/// ConstantPointerRef's, followed by ConstantExpr's (the most complex).
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
static Instruction::BinaryOps evaluateRelation(const Constant *V1,
const Constant *V2) {
@ -640,15 +640,15 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1,
"Cannot compare different types of values!");
if (V1 == V2) return Instruction::SetEQ;
if (!isa<ConstantExpr>(V1) && !isa<ConstantPointerRef>(V1)) {
if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
// If the first operand is simple, swap operands.
assert((isa<ConstantPointerRef>(V2) || isa<ConstantExpr>(V2)) &&
assert((isa<GlobalValue>(V2) || isa<ConstantExpr>(V2)) &&
"Simple cases should have been handled by caller!");
Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
if (SwappedRelation != Instruction::BinaryOpsEnd)
return SetCondInst::getSwappedCondition(SwappedRelation);
} else if (const ConstantPointerRef *CPR1 = dyn_cast<ConstantPointerRef>(V1)){
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)){
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
if (SwappedRelation != Instruction::BinaryOpsEnd)
@ -657,11 +657,11 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1,
return Instruction::BinaryOpsEnd;
}
// Now we know that the RHS is a ConstantPointerRef or simple constant,
// Now we know that the RHS is a GlobalValue or simple constant,
// which (since the types must match) means that it's a ConstantPointerNull.
if (const ConstantPointerRef *CPR2 = dyn_cast<ConstantPointerRef>(V2)) {
assert(CPR1->getValue() != CPR2->getValue() &&
"CPRs for the same value exist at different addresses??");
if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
assert(CPR1 != CPR2 &&
"GVs for the same value exist at different addresses??");
// FIXME: If both globals are external weak, they might both be null!
return Instruction::SetNE;
} else {
@ -693,7 +693,7 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1,
if (isa<ConstantPointerNull>(V2)) {
// If we are comparing a GEP to a null pointer, check to see if the base
// of the GEP equals the null pointer.
if (isa<ConstantPointerRef>(CE1Op0)) {
if (isa<GlobalValue>(CE1Op0)) {
// FIXME: this is not true when we have external weak references!
// No offset can go from a global to a null pointer.
return Instruction::SetGT;
@ -708,13 +708,11 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1,
return Instruction::SetEQ;
}
// Otherwise, we can't really say if the first operand is null or not.
} else if (const ConstantPointerRef *CPR2 =
dyn_cast<ConstantPointerRef>(V2)) {
} else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
if (isa<ConstantPointerNull>(CE1Op0)) {
// FIXME: This is not true with external weak references.
return Instruction::SetLT;
} else if (const ConstantPointerRef *CPR1 =
dyn_cast<ConstantPointerRef>(CE1Op0)) {
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
if (CPR1 == CPR2) {
// If this is a getelementptr of the same global, then it must be
// different. Because the types must match, the getelementptr could
@ -741,8 +739,7 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1,
case Instruction::GetElementPtr:
// By far the most common case to handle is when the base pointers are
// obviously to the same or different globals.
if (isa<ConstantPointerRef>(CE1Op0) &&
isa<ConstantPointerRef>(CE2Op0)) {
if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
return Instruction::SetNE;
// Ok, we know that both getelementptr instructions are based on the
@ -896,13 +893,13 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
return const_cast<Constant*>(V1); // X & -1 == X
if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
if (CE1->getOpcode() == Instruction::Cast &&
isa<ConstantPointerRef>(CE1->getOperand(0))) {
ConstantPointerRef *CPR =cast<ConstantPointerRef>(CE1->getOperand(0));
isa<GlobalValue>(CE1->getOperand(0))) {
GlobalValue *CPR =cast<GlobalValue>(CE1->getOperand(0));
// Functions are at least 4-byte aligned. If and'ing the address of a
// function with a constant < 4, fold it to zero.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
if (CI->getRawValue() < 4 && isa<Function>(CPR->getValue()))
if (CI->getRawValue() < 4 && isa<Function>(CPR))
return Constant::getNullValue(CI->getType());
}
break;