[MCJIT] Clean up RuntimeDyld's quirky object-ownership/modification scheme.

Previously, when loading an object file, RuntimeDyld (1) took ownership of the
ObjectFile instance (and associated MemoryBuffer), (2) potentially modified the
object in-place, and (3) returned an ObjectImage that managed ownership of the
now-modified object and provided some convenience methods. This scheme accreted
over several years as features were tacked on to RuntimeDyld, and was both
unintuitive and unsafe (See e.g. http://llvm.org/PR20722).

This patch fixes the issue by removing all ownership and in-place modification
of object files from RuntimeDyld. Existing behavior, including debugger
registration, is preserved.

Noteworthy changes include:

(1) ObjectFile instances are now passed to RuntimeDyld by const-ref.
(2) The ObjectImage and ObjectBuffer classes have been removed entirely, they
    existed to model ownership within RuntimeDyld, and so are no longer needed.
(3) RuntimeDyld::loadObject now returns an instance of a new class,
    RuntimeDyld::LoadedObjectInfo, which can be used to construct a modified
    object suitable for registration with the debugger, following the existing
    debugger registration scheme.
(4) The JITRegistrar class has been removed, and the GDBRegistrar class has been
    re-written as a JITEventListener.

This should fix http://llvm.org/PR20722 .



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222810 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Lang Hames 2014-11-26 06:53:26 +00:00
parent 568f7e8228
commit 7acaefabf6
31 changed files with 631 additions and 869 deletions

View File

@ -15,6 +15,7 @@
#ifndef LLVM_EXECUTIONENGINE_JITEVENTLISTENER_H
#define LLVM_EXECUTIONENGINE_JITEVENTLISTENER_H
#include "RuntimeDyld.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Support/DataTypes.h"
@ -25,7 +26,10 @@ class Function;
class MachineFunction;
class OProfileWrapper;
class IntelJITEventsWrapper;
class ObjectImage;
namespace object {
class ObjectFile;
}
/// JITEvent_EmittedFunctionDetails - Helper struct for containing information
/// about a generated machine code function.
@ -57,7 +61,7 @@ public:
public:
JITEventListener() {}
virtual ~JITEventListener();
virtual ~JITEventListener() {}
/// NotifyObjectEmitted - Called after an object has been successfully
/// emitted to memory. NotifyFunctionEmitted will not be called for
@ -67,11 +71,15 @@ public:
/// The ObjectImage contains the generated object image
/// with section headers updated to reflect the address at which sections
/// were loaded and with relocations performed in-place on debug sections.
virtual void NotifyObjectEmitted(const ObjectImage &Obj) {}
virtual void NotifyObjectEmitted(const object::ObjectFile &Obj,
const RuntimeDyld::LoadedObjectInfo &L) {}
/// NotifyFreeingObject - Called just before the memory associated with
/// a previously emitted object is released.
virtual void NotifyFreeingObject(const ObjectImage &Obj) {}
virtual void NotifyFreeingObject(const object::ObjectFile &Obj) {}
// Get a pointe to the GDB debugger registration listener.
static JITEventListener *createGDBRegistrationListener();
#if LLVM_USE_INTEL_JITEVENTS
// Construct an IntelJITEventListener
@ -105,7 +113,8 @@ public:
return nullptr;
}
#endif // USE_OPROFILE
private:
virtual void anchor();
};
} // end namespace llvm.

View File

@ -1,76 +0,0 @@
//===---- ObjectBuffer.h - Utility class to wrap object image memory -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a wrapper class to hold the memory into which an
// object will be generated.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#define LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
/// This class acts as a container for the memory buffer used during generation
/// and loading of executable objects using MCJIT and RuntimeDyld. The
/// underlying memory for the object will be owned by the ObjectBuffer instance
/// throughout its lifetime.
class ObjectBuffer {
virtual void anchor();
public:
ObjectBuffer() {}
ObjectBuffer(std::unique_ptr<MemoryBuffer> Buf) : Buffer(std::move(Buf)) {}
virtual ~ObjectBuffer() {}
MemoryBufferRef getMemBuffer() const { return Buffer->getMemBufferRef(); }
const char *getBufferStart() const { return Buffer->getBufferStart(); }
size_t getBufferSize() const { return Buffer->getBufferSize(); }
StringRef getBuffer() const { return Buffer->getBuffer(); }
StringRef getBufferIdentifier() const {
return Buffer->getBufferIdentifier();
}
protected:
// The memory contained in an ObjectBuffer
std::unique_ptr<MemoryBuffer> Buffer;
};
/// This class encapsulates the SmallVector and raw_svector_ostream needed to
/// generate an object using MC code emission while providing a common
/// ObjectBuffer interface for access to the memory once the object has been
/// generated.
class ObjectBufferStream : public ObjectBuffer {
void anchor() override;
public:
ObjectBufferStream() : OS(SV) {}
virtual ~ObjectBufferStream() {}
raw_ostream &getOStream() { return OS; }
void flush()
{
OS.flush();
// Make the data accessible via the ObjectBuffer::Buffer
Buffer =
MemoryBuffer::getMemBuffer(StringRef(SV.data(), SV.size()), "", false);
}
protected:
SmallVector<char, 4096> SV; // Working buffer into which we JIT.
raw_svector_ostream OS; // streaming wrapper
};
} // namespace llvm
#endif

View File

@ -1,76 +0,0 @@
//===---- ObjectImage.h - Format independent executuable object image -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectImage class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTIMAGE_H
#define LLVM_EXECUTIONENGINE_OBJECTIMAGE_H
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/Object/ObjectFile.h"
namespace llvm {
/// ObjectImage - A container class that represents an ObjectFile that has been
/// or is in the process of being loaded into memory for execution.
class ObjectImage {
ObjectImage() LLVM_DELETED_FUNCTION;
ObjectImage(const ObjectImage &other) LLVM_DELETED_FUNCTION;
virtual void anchor();
protected:
std::unique_ptr<ObjectBuffer> Buffer;
public:
ObjectImage(std::unique_ptr<ObjectBuffer> Input) : Buffer(std::move(Input)) {}
virtual ~ObjectImage() {}
virtual object::symbol_iterator begin_symbols() const = 0;
virtual object::symbol_iterator end_symbols() const = 0;
iterator_range<object::symbol_iterator> symbols() const {
return iterator_range<object::symbol_iterator>(begin_symbols(),
end_symbols());
}
virtual object::section_iterator begin_sections() const = 0;
virtual object::section_iterator end_sections() const = 0;
iterator_range<object::section_iterator> sections() const {
return iterator_range<object::section_iterator>(begin_sections(),
end_sections());
}
virtual /* Triple::ArchType */ unsigned getArch() const = 0;
// Return the name associated with this ObjectImage.
// This is usually the name of the file or MemoryBuffer that the the
// ObjectBuffer was constructed from.
StringRef getImageName() const { return Buffer->getBufferIdentifier(); }
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
virtual void updateSectionAddress(const object::SectionRef &Sec,
uint64_t Addr) = 0;
virtual void updateSymbolAddress(const object::SymbolRef &Sym,
uint64_t Addr) = 0;
virtual StringRef getData() const = 0;
virtual object::ObjectFile* getObjectFile() const = 0;
// Subclasses can override these methods to provide JIT debugging support
virtual void registerWithDebugger() = 0;
virtual void deregisterWithDebugger() = 0;
};
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_OBJECTIMAGE_H

View File

@ -22,7 +22,10 @@
namespace llvm {
class ExecutionEngine;
class ObjectImage;
namespace object {
class ObjectFile;
}
// RuntimeDyld clients often want to handle the memory management of
// what gets placed where. For JIT clients, this is the subset of
@ -109,7 +112,7 @@ public:
/// address space can use this call to remap the section addresses for the
/// newly loaded object.
virtual void notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *) {}
const object::ObjectFile &) {}
/// This method is called when object loading is complete and section page
/// permissions can be applied. It is up to the memory manager implementation

View File

@ -15,19 +15,19 @@
#define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/Support/Memory.h"
#include <memory>
namespace llvm {
namespace object {
class ObjectFile;
template <typename T> class OwningBinary;
}
class RuntimeDyldImpl;
class RuntimeDyldCheckerImpl;
class ObjectImage;
class RuntimeDyld {
friend class RuntimeDyldCheckerImpl;
@ -46,22 +46,35 @@ protected:
// Any relocations already associated with the symbol will be re-resolved.
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
public:
/// \brief Information about the loaded object.
class LoadedObjectInfo {
friend class RuntimeDyldImpl;
public:
LoadedObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
unsigned EndIdx)
: RTDyld(RTDyld), BeginIdx(BeginIdx), EndIdx(EndIdx) { }
virtual ~LoadedObjectInfo() {}
virtual object::OwningBinary<object::ObjectFile>
getObjectForDebug(const object::ObjectFile &Obj) const = 0;
uint64_t getSectionLoadAddress(StringRef Name) const;
protected:
virtual void anchor();
RuntimeDyldImpl &RTDyld;
unsigned BeginIdx, EndIdx;
};
RuntimeDyld(RTDyldMemoryManager *);
~RuntimeDyld();
/// Prepare the object contained in the input buffer for execution.
/// Ownership of the input buffer is transferred to the ObjectImage
/// instance returned from this function if successful. In the case of load
/// failure, the input buffer will be deleted.
std::unique_ptr<ObjectImage>
loadObject(std::unique_ptr<ObjectBuffer> InputBuffer);
/// Prepare the referenced object file for execution.
/// Ownership of the input object is transferred to the ObjectImage
/// instance returned from this function if successful. In the case of load
/// failure, the input object will be deleted.
std::unique_ptr<ObjectImage>
loadObject(std::unique_ptr<object::ObjectFile> InputObject);
/// Add the referenced object file to the list of objects to be loaded and
/// relocated.
std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
/// Get the address of our local copy of the symbol. This may or may not
/// be the address used for relocation (clients can copy the data around

View File

@ -3,7 +3,6 @@
add_llvm_library(LLVMExecutionEngine
ExecutionEngine.cpp
ExecutionEngineBindings.cpp
JITEventListener.cpp
RTDyldMemoryManager.cpp
TargetSelect.cpp
)

View File

@ -16,8 +16,7 @@
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
@ -43,17 +42,15 @@ using namespace llvm;
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
STATISTIC(NumGlobals , "Number of global vars initialized");
// Pin the vtable to this file.
void ObjectCache::anchor() {}
void ObjectBuffer::anchor() {}
void ObjectBufferStream::anchor() {}
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
std::unique_ptr<Module> M, std::string *ErrorStr,
RTDyldMemoryManager *MCJMM, std::unique_ptr<TargetMachine> TM) = nullptr;
ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
std::string *ErrorStr) =nullptr;
// Anchor for the JITEventListener class.
void JITEventListener::anchor() {}
ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
: EEState(*this),
LazyFunctionCreator(nullptr) {

View File

@ -21,7 +21,6 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@ -32,6 +31,7 @@
using namespace llvm;
using namespace llvm::jitprofiling;
using namespace llvm::object;
#define DEBUG_TYPE "amplifier-jit-event-listener"
@ -48,6 +48,7 @@ class IntelJITEventListener : public JITEventListener {
typedef DenseMap<const void *, MethodAddressVector> ObjectMap;
ObjectMap LoadedObjectMap;
std::map<const char*, OwningBinary<ObjectFile>> DebugObjects;
public:
IntelJITEventListener(IntelJITEventsWrapper* libraryWrapper) {
@ -57,9 +58,10 @@ public:
~IntelJITEventListener() {
}
virtual void NotifyObjectEmitted(const ObjectImage &Obj);
void NotifyObjectEmitted(const ObjectFile &Obj,
const RuntimeDyld::LoadedObjectInfo &L) override;
virtual void NotifyFreeingObject(const ObjectImage &Obj);
void NotifyFreeingObject(const ObjectFile &Obj) override;
};
static LineNumberInfo DILineInfoToIntelJITFormat(uintptr_t StartAddress,
@ -95,23 +97,29 @@ static iJIT_Method_Load FunctionDescToIntelJITFormat(
return Result;
}
void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
void IntelJITEventListener::NotifyObjectEmitted(
const ObjectFile &Obj,
const RuntimeDyld::LoadedObjectInfo &L) {
OwningBinary<ObjectFile> DebugObjOwner = L.getObjectForDebug(Obj);
const ObjectFile &DebugObj = *DebugObjOwner.getBinary();
// Get the address of the object image for use as a unique identifier
const void* ObjData = Obj.getData().data();
DIContext* Context = DIContext::getDWARFContext(*Obj.getObjectFile());
const void* ObjData = DebugObj.getData().data();
DIContext* Context = DIContext::getDWARFContext(DebugObj);
MethodAddressVector Functions;
// Use symbol info to iterate functions in the object.
for (object::symbol_iterator I = Obj.begin_symbols(),
E = Obj.end_symbols();
for (symbol_iterator I = DebugObj.symbol_begin(),
E = DebugObj.symbol_end();
I != E;
++I) {
std::vector<LineNumberInfo> LineInfo;
std::string SourceFileName;
object::SymbolRef::Type SymType;
SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
if (SymType == object::SymbolRef::ST_Function) {
if (SymType == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
uint64_t Size;
@ -162,11 +170,18 @@ void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
// registered function addresses for each loaded object. We will
// use the MethodIDs map to get the registered ID for each function.
LoadedObjectMap[ObjData] = Functions;
DebugObjects[Obj.getData().data()] = std::move(DebugObjOwner);
}
void IntelJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
void IntelJITEventListener::NotifyFreeingObject(const ObjectFile &Obj) {
// This object may not have been registered with the listener. If it wasn't,
// bail out.
if (DebugObjects.find(Obj.getData().data()) == DebugObjects.end())
return;
// Get the address of the object image for use as a unique identifier
const void* ObjData = Obj.getData().data();
const ObjectFile &DebugObj = *DebugObjects[Obj.getData().data()].getBinary();
const void* ObjData = DebugObj.getData().data();
// Get the object's function list from LoadedObjectMap
ObjectMap::iterator OI = LoadedObjectMap.find(ObjData);
@ -190,6 +205,7 @@ void IntelJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
// Erase the object from LoadedObjectMap
LoadedObjectMap.erase(OI);
DebugObjects.erase(Obj.getData().data());
}
} // anonymous namespace.

View File

@ -1,15 +0,0 @@
//===-- JITEventListener.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JITEventListener.h"
using namespace llvm;
// Out-of-line definition of the virtual destructor as this is the key function.
JITEventListener::~JITEventListener() {}

View File

@ -11,8 +11,6 @@
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
@ -21,6 +19,7 @@
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/PassManager.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
@ -31,6 +30,8 @@
using namespace llvm;
void ObjectCache::anchor() {}
namespace {
static struct RegisterJIT {
@ -74,6 +75,7 @@ MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
OwnedModules.addModule(std::move(First));
setDataLayout(TM->getSubtargetImpl()->getDataLayout());
RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
}
MCJIT::~MCJIT() {
@ -99,13 +101,13 @@ bool MCJIT::removeModule(Module *M) {
}
void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
std::unique_ptr<ObjectImage> LoadedObject = Dyld.loadObject(std::move(Obj));
if (!LoadedObject || Dyld.hasError())
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
NotifyObjectEmitted(*LoadedObject);
NotifyObjectEmitted(*Obj, *L);
LoadedObjects.push_back(std::move(LoadedObject));
LoadedObjects.push_back(std::move(Obj));
}
void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
@ -125,7 +127,7 @@ void MCJIT::setObjectCache(ObjectCache* NewCache) {
ObjCache = NewCache;
}
std::unique_ptr<ObjectBufferStream> MCJIT::emitObject(Module *M) {
std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
MutexGuard locked(lock);
// This must be a module which has already been added but not loaded to this
@ -138,30 +140,32 @@ std::unique_ptr<ObjectBufferStream> MCJIT::emitObject(Module *M) {
PM.add(new DataLayoutPass());
// The RuntimeDyld will take ownership of this shortly
std::unique_ptr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
SmallVector<char, 4096> ObjBufferSV;
raw_svector_ostream ObjStream(ObjBufferSV);
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(),
!getVerifyModules())) {
if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
PM.run(*M);
// Flush the output buffer to get the generated code into memory
CompiledObject->flush();
ObjStream.flush();
std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
new ObjectMemoryBuffer(std::move(ObjBufferSV)));
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
MemoryBufferRef MB = CompiledObject->getMemBuffer();
MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
ObjCache->notifyObjectCompiled(M, MB);
}
return CompiledObject;
return CompiledObjBuffer;
}
void MCJIT::generateCodeForModule(Module *M) {
@ -176,14 +180,10 @@ void MCJIT::generateCodeForModule(Module *M) {
if (OwnedModules.hasModuleBeenLoaded(M))
return;
std::unique_ptr<ObjectBuffer> ObjectToLoad;
std::unique_ptr<MemoryBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (ObjCache) {
if (std::unique_ptr<MemoryBuffer> PreCompiledObject =
ObjCache->getObject(M))
ObjectToLoad =
llvm::make_unique<ObjectBuffer>(std::move(PreCompiledObject));
}
if (ObjCache)
ObjectToLoad = ObjCache->getObject(M);
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
@ -193,17 +193,18 @@ void MCJIT::generateCodeForModule(Module *M) {
// Load the object into the dynamic linker.
// MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
std::unique_ptr<ObjectImage> LoadedObject =
Dyld.loadObject(std::move(ObjectToLoad));
if (!LoadedObject)
ErrorOr<std::unique_ptr<object::ObjectFile>> LoadedObject =
object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
Dyld.loadObject(*LoadedObject.get());
if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
// FIXME: Make this optional, maybe even move it to a JIT event listener
LoadedObject->registerWithDebugger();
NotifyObjectEmitted(*LoadedObject.get(), *L);
NotifyObjectEmitted(*LoadedObject);
LoadedObjects.push_back(std::move(LoadedObject));
Buffers.push_back(std::move(ObjectToLoad));
LoadedObjects.push_back(std::move(*LoadedObject));
OwnedModules.markModuleAsLoaded(M);
}
@ -549,6 +550,7 @@ void MCJIT::RegisterJITEventListener(JITEventListener *L) {
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (!L)
return;
@ -559,14 +561,17 @@ void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
EventListeners.pop_back();
}
}
void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
const RuntimeDyld::LoadedObjectInfo &L) {
MutexGuard locked(lock);
MemMgr.notifyObjectLoaded(this, &Obj);
MemMgr.notifyObjectLoaded(this, Obj);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj);
EventListeners[I]->NotifyObjectEmitted(Obj, L);
}
}
void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
MutexGuard locked(lock);
for (JITEventListener *L : EventListeners)
L->NotifyFreeingObject(Obj);

View File

@ -10,12 +10,12 @@
#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H
#define LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H
#include "ObjectBuffer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/Module.h"
@ -57,7 +57,7 @@ public:
}
void notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *Obj) override {
const object::ObjectFile &Obj) override {
ClientMM->notifyObjectLoaded(EE, Obj);
}
@ -222,7 +222,7 @@ class MCJIT : public ExecutionEngine {
SmallVector<object::OwningBinary<object::Archive>, 2> Archives;
SmallVector<std::unique_ptr<MemoryBuffer>, 2> Buffers;
SmallVector<std::unique_ptr<ObjectImage>, 2> LoadedObjects;
SmallVector<std::unique_ptr<object::ObjectFile>, 2> LoadedObjects;
// An optional ObjectCache to be notified of compiled objects and used to
// perform lookup of pre-compiled code to avoid re-compilation.
@ -341,10 +341,11 @@ protected:
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
/// the future.
std::unique_ptr<ObjectBufferStream> emitObject(Module *M);
std::unique_ptr<MemoryBuffer> emitObject(Module *M);
void NotifyObjectEmitted(const ObjectImage& Obj);
void NotifyFreeingObject(const ObjectImage& Obj);
void NotifyObjectEmitted(const object::ObjectFile& Obj,
const RuntimeDyld::LoadedObjectInfo &L);
void NotifyFreeingObject(const object::ObjectFile& Obj);
uint64_t getExistingSymbolAddress(const std::string &Name);
Module *findModuleForSymbol(const std::string &Name,

View File

@ -0,0 +1,48 @@
//===--- ObjectBuffer.h - Utility class to wrap object memory ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a wrapper class to hold the memory into which an
// object will be generated.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#define LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
class ObjectMemoryBuffer : public MemoryBuffer {
public:
template <unsigned N>
ObjectMemoryBuffer(SmallVector<char, N> SV)
: SV(SV), BufferName("<in-memory object>") {
init(this->SV.begin(), this->SV.end(), false);
}
template <unsigned N>
ObjectMemoryBuffer(SmallVector<char, N> SV, StringRef Name)
: SV(SV), BufferName(Name) {
init(this->SV.begin(), this->SV.end(), false);
}
const char* getBufferIdentifier() const override { return BufferName.c_str(); }
BufferKind getBufferKind() const override { return MemoryBuffer_Malloc; }
private:
SmallVector<char, 4096> SV;
std::string BufferName;
};
} // namespace llvm
#endif

View File

@ -18,8 +18,8 @@
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/OProfileWrapper.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@ -31,31 +31,34 @@
using namespace llvm;
using namespace llvm::jitprofiling;
using namespace llvm::object;
#define DEBUG_TYPE "oprofile-jit-event-listener"
namespace {
class OProfileJITEventListener : public JITEventListener {
OProfileWrapper& Wrapper;
std::unique_ptr<OProfileWrapper> Wrapper;
void initialize();
std::map<const char*, OwningBinary<ObjectFile>> DebugObjects;
public:
OProfileJITEventListener(OProfileWrapper& LibraryWrapper)
: Wrapper(LibraryWrapper) {
OProfileJITEventListener(std::unique_ptr<OProfileWrapper> LibraryWrapper)
: Wrapper(std::move(LibraryWrapper)) {
initialize();
}
~OProfileJITEventListener();
virtual void NotifyObjectEmitted(const ObjectImage &Obj);
void NotifyObjectEmitted(const ObjectFile &Obj,
const RuntimeDyld::LoadedObjectInfo &L) override;
virtual void NotifyFreeingObject(const ObjectImage &Obj);
void NotifyFreeingObject(const ObjectFile &Obj) override;
};
void OProfileJITEventListener::initialize() {
if (!Wrapper.op_open_agent()) {
if (!Wrapper->op_open_agent()) {
const std::string err_str = sys::StrError();
DEBUG(dbgs() << "Failed to connect to OProfile agent: " << err_str << "\n");
} else {
@ -64,8 +67,8 @@ void OProfileJITEventListener::initialize() {
}
OProfileJITEventListener::~OProfileJITEventListener() {
if (Wrapper.isAgentAvailable()) {
if (Wrapper.op_close_agent() == -1) {
if (Wrapper->isAgentAvailable()) {
if (Wrapper->op_close_agent() == -1) {
const std::string err_str = sys::StrError();
DEBUG(dbgs() << "Failed to disconnect from OProfile agent: "
<< err_str << "\n");
@ -75,17 +78,22 @@ OProfileJITEventListener::~OProfileJITEventListener() {
}
}
void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
if (!Wrapper.isAgentAvailable()) {
void OProfileJITEventListener::NotifyObjectEmitted(
const ObjectFile &Obj,
const RuntimeDyld::LoadedObjectInfo &L) {
if (!Wrapper->isAgentAvailable()) {
return;
}
OwningBinary<ObjectFile> DebugObjOwner = L.getObjectForDebug(Obj);
const ObjectFile &DebugObj = *DebugObjOwner.getBinary();
// Use symbol info to iterate functions in the object.
for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
for (symbol_iterator I = DebugObj.symbol_begin(), E = DebugObj.symbol_end();
I != E; ++I) {
object::SymbolRef::Type SymType;
SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
if (SymType == object::SymbolRef::ST_Function) {
if (SymType == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
uint64_t Size;
@ -93,7 +101,7 @@ void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
if (I->getAddress(Addr)) continue;
if (I->getSize(Size)) continue;
if (Wrapper.op_write_native_code(Name.data(), Addr, (void*)Addr, Size)
if (Wrapper->op_write_native_code(Name.data(), Addr, (void*)Addr, Size)
== -1) {
DEBUG(dbgs() << "Failed to tell OProfile about native function "
<< Name << " at ["
@ -103,45 +111,48 @@ void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
// TODO: support line number info (similar to IntelJITEventListener.cpp)
}
}
DebugObjects[Obj.getData().data()] = std::move(DebugObjOwner);
}
void OProfileJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
if (!Wrapper.isAgentAvailable()) {
return;
}
void OProfileJITEventListener::NotifyFreeingObject(const ObjectFile &Obj) {
if (Wrapper->isAgentAvailable()) {
// Use symbol info to iterate functions in the object.
for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
I != E; ++I) {
object::SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
if (SymType == object::SymbolRef::ST_Function) {
uint64_t Addr;
if (I->getAddress(Addr)) continue;
// If there was no agent registered when the original object was loaded then
// we won't have created a debug object for it, so bail out.
if (DebugObjects.find(Obj.getData().data()) == DebugObjects.end())
return;
if (Wrapper.op_unload_native_code(Addr) == -1) {
DEBUG(dbgs()
<< "Failed to tell OProfile about unload of native function at "
<< (void*)Addr << "\n");
continue;
const ObjectFile &DebugObj = *DebugObjects[Obj.getData().data()].getBinary();
// Use symbol info to iterate functions in the object.
for (symbol_iterator I = DebugObj.symbol_begin(),
E = DebugObj.symbol_end();
I != E; ++I) {
SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
if (SymType == SymbolRef::ST_Function) {
uint64_t Addr;
if (I->getAddress(Addr)) continue;
if (Wrapper->op_unload_native_code(Addr) == -1) {
DEBUG(dbgs()
<< "Failed to tell OProfile about unload of native function at "
<< (void*)Addr << "\n");
continue;
}
}
}
}
DebugObjects.erase(Obj.getData().data());
}
} // anonymous namespace.
namespace llvm {
JITEventListener *JITEventListener::createOProfileJITEventListener() {
static std::unique_ptr<OProfileWrapper> JITProfilingWrapper(
new OProfileWrapper);
return new OProfileJITEventListener(*JITProfilingWrapper);
}
// for testing
JITEventListener *JITEventListener::createOProfileJITEventListener(
OProfileWrapper* TestImpl) {
return new OProfileJITEventListener(*TestImpl);
return new OProfileJITEventListener(llvm::make_unique<OProfileWrapper>());
}
} // namespace llvm

View File

@ -1,5 +1,5 @@
add_llvm_library(LLVMRuntimeDyld
GDBRegistrar.cpp
GDBRegistrationListener.cpp
RuntimeDyld.cpp
RuntimeDyldChecker.cpp
RuntimeDyldELF.cpp

View File

@ -1,4 +1,4 @@
//===-- GDBRegistrar.cpp - Registers objects with GDB ---------------------===//
//===----- GDBRegistrationListener.cpp - Registers objects with GDB -------===//
//
// The LLVM Compiler Infrastructure
//
@ -7,8 +7,9 @@
//
//===----------------------------------------------------------------------===//
#include "JITRegistrar.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mutex.h"
@ -16,6 +17,7 @@
#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
using namespace llvm::object;
// This must be kept in sync with gdb/gdb/jit.h .
extern "C" {
@ -60,37 +62,49 @@ extern "C" {
namespace {
struct RegisteredObjectInfo {
RegisteredObjectInfo() {}
RegisteredObjectInfo(std::size_t Size, jit_code_entry *Entry,
OwningBinary<ObjectFile> Obj)
: Size(Size), Entry(Entry), Obj(std::move(Obj)) {}
std::size_t Size;
jit_code_entry *Entry;
OwningBinary<ObjectFile> Obj;
};
// Buffer for an in-memory object file in executable memory
typedef llvm::DenseMap< const char*,
std::pair<std::size_t, jit_code_entry*> >
typedef llvm::DenseMap< const char*, RegisteredObjectInfo>
RegisteredObjectBufferMap;
/// Global access point for the JIT debugging interface designed for use with a
/// singleton toolbox. Handles thread-safe registration and deregistration of
/// object files that are in executable memory managed by the client of this
/// class.
class GDBJITRegistrar : public JITRegistrar {
class GDBJITRegistrationListener : public JITEventListener {
/// A map of in-memory object files that have been registered with the
/// JIT interface.
RegisteredObjectBufferMap ObjectBufferMap;
public:
/// Instantiates the JIT service.
GDBJITRegistrar() : ObjectBufferMap() {}
GDBJITRegistrationListener() : ObjectBufferMap() {}
/// Unregisters each object that was previously registered and releases all
/// internal resources.
virtual ~GDBJITRegistrar();
virtual ~GDBJITRegistrationListener();
/// Creates an entry in the JIT registry for the buffer @p Object,
/// which must contain an object file in executable memory with any
/// debug information for the debugger.
void registerObject(const ObjectBuffer &Object) override;
void NotifyObjectEmitted(const ObjectFile &Object,
const RuntimeDyld::LoadedObjectInfo &L) override;
/// Removes the internal registration of @p Object, and
/// frees associated resources.
/// Returns true if @p Object was found in ObjectBufferMap.
bool deregisterObject(const ObjectBuffer &Object) override;
void NotifyFreeingObject(const ObjectFile &Object) override;
private:
/// Deregister the debug info for the given object file from the debugger
@ -119,10 +133,11 @@ void NotifyDebugger(jit_code_entry* JITCodeEntry) {
__jit_debug_register_code();
}
GDBJITRegistrar::~GDBJITRegistrar() {
GDBJITRegistrationListener::~GDBJITRegistrationListener() {
// Free all registered object files.
llvm::MutexGuard locked(*JITDebugLock);
for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(), E = ObjectBufferMap.end();
for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(),
E = ObjectBufferMap.end();
I != E; ++I) {
// Call the private method that doesn't update the map so our iterator
// doesn't break.
@ -131,14 +146,19 @@ GDBJITRegistrar::~GDBJITRegistrar() {
ObjectBufferMap.clear();
}
void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) {
void GDBJITRegistrationListener::NotifyObjectEmitted(
const ObjectFile &Object,
const RuntimeDyld::LoadedObjectInfo &L) {
const char *Buffer = Object.getBufferStart();
size_t Size = Object.getBufferSize();
OwningBinary<ObjectFile> DebugObj = L.getObjectForDebug(Object);
const char *Buffer = DebugObj.getBinary()->getMemoryBufferRef().getBufferStart();
size_t Size = DebugObj.getBinary()->getMemoryBufferRef().getBufferSize();
assert(Buffer && "Attempt to register a null object with a debugger.");
const char *Key = Object.getMemoryBufferRef().getBufferStart();
assert(Key && "Attempt to register a null object with a debugger.");
llvm::MutexGuard locked(*JITDebugLock);
assert(ObjectBufferMap.find(Buffer) == ObjectBufferMap.end() &&
assert(ObjectBufferMap.find(Key) == ObjectBufferMap.end() &&
"Second attempt to perform debug registration.");
jit_code_entry* JITCodeEntry = new jit_code_entry();
@ -149,28 +169,27 @@ void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) {
JITCodeEntry->symfile_addr = Buffer;
JITCodeEntry->symfile_size = Size;
ObjectBufferMap[Buffer] = std::make_pair(Size, JITCodeEntry);
ObjectBufferMap[Key] = RegisteredObjectInfo(Size, JITCodeEntry,
std::move(DebugObj));
NotifyDebugger(JITCodeEntry);
}
}
bool GDBJITRegistrar::deregisterObject(const ObjectBuffer& Object) {
const char *Buffer = Object.getBufferStart();
void GDBJITRegistrationListener::NotifyFreeingObject(const ObjectFile& Object) {
const char *Key = Object.getMemoryBufferRef().getBufferStart();
llvm::MutexGuard locked(*JITDebugLock);
RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Buffer);
RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Key);
if (I != ObjectBufferMap.end()) {
deregisterObjectInternal(I);
ObjectBufferMap.erase(I);
return true;
}
return false;
}
void GDBJITRegistrar::deregisterObjectInternal(
void GDBJITRegistrationListener::deregisterObjectInternal(
RegisteredObjectBufferMap::iterator I) {
jit_code_entry*& JITCodeEntry = I->second.second;
jit_code_entry*& JITCodeEntry = I->second.Entry;
// Do the unregistration.
{
@ -200,14 +219,14 @@ void GDBJITRegistrar::deregisterObjectInternal(
JITCodeEntry = nullptr;
}
llvm::ManagedStatic<GDBJITRegistrar> TheRegistrar;
llvm::ManagedStatic<GDBJITRegistrationListener> GDBRegListener;
} // end namespace
namespace llvm {
JITRegistrar& JITRegistrar::getGDBRegistrar() {
return *TheRegistrar;
JITEventListener* JITEventListener::createGDBRegistrationListener() {
return &*GDBRegListener;
}
} // namespace llvm

View File

@ -1,44 +0,0 @@
//===-- JITRegistrar.h - Registers objects with a debugger ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_JITREGISTRAR_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_JITREGISTRAR_H
#include "llvm/ExecutionEngine/ObjectBuffer.h"
namespace llvm {
/// Global access point for the JIT debugging interface.
class JITRegistrar {
virtual void anchor();
public:
/// Instantiates the JIT service.
JITRegistrar() {}
/// Unregisters each object that was previously registered and releases all
/// internal resources.
virtual ~JITRegistrar() {}
/// Creates an entry in the JIT registry for the buffer @p Object,
/// which must contain an object file in executable memory with any
/// debug information for the debugger.
virtual void registerObject(const ObjectBuffer &Object) = 0;
/// Removes the internal registration of @p Object, and
/// frees associated resources.
/// Returns true if @p Object was previously registered.
virtual bool deregisterObject(const ObjectBuffer &Object) = 0;
/// Returns a reference to a GDB JIT registrar singleton
static JITRegistrar& getGDBRegistrar();
};
} // end namespace llvm
#endif

View File

@ -1,86 +0,0 @@
//===-- ObjectImageCommon.h - Format independent executuable object image -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectImage class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/Object/ObjectFile.h"
#include <memory>
namespace llvm {
namespace object {
class ObjectFile;
}
class ObjectImageCommon : public ObjectImage {
ObjectImageCommon(); // = delete
ObjectImageCommon(const ObjectImageCommon &other); // = delete
void anchor() override;
protected:
std::unique_ptr<object::ObjectFile> ObjFile;
// This form of the constructor allows subclasses to use
// format-specific subclasses of ObjectFile directly
ObjectImageCommon(std::unique_ptr<ObjectBuffer> Input,
std::unique_ptr<object::ObjectFile> Obj)
: ObjectImage(std::move(Input)), ObjFile(std::move(Obj)) {}
public:
ObjectImageCommon(std::unique_ptr<ObjectBuffer> Input)
: ObjectImage(std::move(Input)) {
// FIXME: error checking? createObjectFile returns an ErrorOr<ObjectFile*>
// and should probably be checked for failure.
MemoryBufferRef Buf = Buffer->getMemBuffer();
ObjFile = std::move(object::ObjectFile::createObjectFile(Buf).get());
}
ObjectImageCommon(std::unique_ptr<object::ObjectFile> Input)
: ObjectImage(nullptr), ObjFile(std::move(Input)) {}
virtual ~ObjectImageCommon() { }
object::symbol_iterator begin_symbols() const override
{ return ObjFile->symbol_begin(); }
object::symbol_iterator end_symbols() const override
{ return ObjFile->symbol_end(); }
object::section_iterator begin_sections() const override
{ return ObjFile->section_begin(); }
object::section_iterator end_sections() const override
{ return ObjFile->section_end(); }
/* Triple::ArchType */ unsigned getArch() const override
{ return ObjFile->getArch(); }
StringRef getData() const override { return ObjFile->getData(); }
object::ObjectFile* getObjectFile() const override { return ObjFile.get(); }
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
void updateSectionAddress(const object::SectionRef &Sec,
uint64_t Addr) override {}
void updateSymbolAddress(const object::SymbolRef &Sym,
uint64_t Addr) override {}
// Subclasses can override these methods to provide JIT debugging support
void registerWithDebugger() override {}
void deregisterWithDebugger() override {}
};
} // end namespace llvm
#endif

View File

@ -12,8 +12,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "RuntimeDyldCheckerImpl.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
@ -30,10 +28,8 @@ using namespace llvm::object;
// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}
// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
void JITRegistrar::anchor() {}
void ObjectImage::anchor() {}
void ObjectImageCommon::anchor() {}
// Pin LoadedObjectInfo's vtables to this file.
void RuntimeDyld::LoadedObjectInfo::anchor() {}
namespace llvm {
@ -139,22 +135,23 @@ static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
return object_error::success;
}
std::unique_ptr<ObjectImage>
RuntimeDyldImpl::loadObject(std::unique_ptr<ObjectImage> Obj) {
std::pair<unsigned, unsigned>
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
MutexGuard locked(lock);
if (!Obj)
return nullptr;
// Grab the first Section ID. We'll use this later to construct the underlying
// range for the returned LoadedObjectInfo.
unsigned SectionsAddedBeginIdx = Sections.size();
// Save information about our target
Arch = (Triple::ArchType)Obj->getArch();
IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
Arch = (Triple::ArchType)Obj.getArch();
IsTargetLittleEndian = Obj.isLittleEndian();
// Compute the memory size required to load all sections to be loaded
// and pass this information to the memory manager
if (MemMgr->needsToReserveAllocationSpace()) {
uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
}
@ -170,7 +167,7 @@ RuntimeDyldImpl::loadObject(std::unique_ptr<ObjectImage> Obj) {
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
++I) {
object::SymbolRef::Type SymType;
StringRef Name;
@ -196,15 +193,15 @@ RuntimeDyldImpl::loadObject(std::unique_ptr<ObjectImage> Obj) {
SymType == object::SymbolRef::ST_Unknown) {
uint64_t SectOffset;
StringRef SectionData;
section_iterator SI = Obj->end_sections();
section_iterator SI = Obj.section_end();
Check(getOffset(*I, SectOffset));
Check(I->getSection(SI));
if (SI == Obj->end_sections())
if (SI == Obj.section_end())
continue;
Check(SI->getContents(SectionData));
bool IsCode = SI->isText();
unsigned SectionID =
findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
findOrEmitSection(Obj, *SI, IsCode, LocalSections);
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
<< " flags: " << Flags << " SID: " << SectionID);
@ -216,11 +213,11 @@ RuntimeDyldImpl::loadObject(std::unique_ptr<ObjectImage> Obj) {
// Allocate common symbols
if (CommonSize != 0)
emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
emitCommonSymbols(Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
// Parse and process relocations
DEBUG(dbgs() << "Parse relocations:\n");
for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
unsigned SectionID = 0;
StubMap Stubs;
@ -234,23 +231,25 @@ RuntimeDyldImpl::loadObject(std::unique_ptr<ObjectImage> Obj) {
bool IsCode = RelocatedSection->isText();
SectionID =
findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
for (; I != E;)
I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
I = processRelocationRef(SectionID, I, Obj, LocalSections, LocalSymbols,
Stubs);
// If there is an attached checker, notify it about the stubs for this
// section so that they can be verified.
if (Checker)
Checker->registerStubMap(Obj->getImageName(), SectionID, Stubs);
Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
}
// Give the subclasses a chance to tie-up any loose ends.
finalizeLoad(*Obj, LocalSections);
finalizeLoad(Obj, LocalSections);
return Obj;
unsigned SectionsAddedEndIdx = Sections.size();
return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
}
// A helper method for computeTotalAllocSize.
@ -270,7 +269,7 @@ computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
// Compute an upper bound of the memory size that is required to load all
// sections
void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
uint64_t &CodeSize,
uint64_t &DataSizeRO,
uint64_t &DataSizeRW) {
@ -282,7 +281,7 @@ void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
// Collect sizes of all sections to be loaded;
// also determine the max alignment of all sections
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
@ -328,7 +327,7 @@ void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
// Compute the size of all common symbols
uint64_t CommonSize = 0;
for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
++I) {
uint32_t Flags = I->getFlags();
if (Flags & SymbolRef::SF_Common) {
@ -353,7 +352,7 @@ void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
}
// compute stub buffer size for the given section
unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
const SectionRef &Section) {
unsigned StubSize = getMaxStubSize();
if (StubSize == 0) {
@ -363,7 +362,7 @@ unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
// necessary section allocation size in loadObject by walking all the sections
// once.
unsigned StubBufSize = 0;
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
section_iterator RelSecI = SI->getRelocatedSection();
if (!(RelSecI == Section))
@ -418,7 +417,7 @@ void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
}
}
void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
const CommonSymbolMap &CommonSymbols,
uint64_t TotalSize,
SymbolTableMap &SymbolTable) {
@ -450,14 +449,13 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
<< format("%p\n", Addr));
}
Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
Offset += Size;
Addr += Size;
}
}
unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
const SectionRef &Section, bool IsCode) {
StringRef data;
@ -521,7 +519,6 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate << "\n");
Obj.updateSectionAddress(Section, (uint64_t)Addr);
} else {
// Even if we didn't load the section, we need to record an entry for it
// to handle later processing (and by 'handle' I mean don't do anything
@ -537,12 +534,12 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
if (Checker)
Checker->registerSection(Obj.getImageName(), SectionID);
Checker->registerSection(Obj.getFileName(), SectionID);
return SectionID;
}
unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections) {
@ -739,6 +736,16 @@ void RuntimeDyldImpl::resolveExternalSymbols() {
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
StringRef SectionName) const {
for (unsigned I = BeginIdx; I != EndIdx; ++I)
if (RTDyld.Sections[I].Name == SectionName)
return RTDyld.Sections[I].LoadAddress;
return 0;
}
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
// FIXME: There's a potential issue lurking here if a single instance of
// RuntimeDyld is used to load multiple objects. The current implementation
@ -772,78 +779,23 @@ createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
return Dyld;
}
std::unique_ptr<ObjectImage>
RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
std::unique_ptr<ObjectImage> InputImage;
ObjectFile &Obj = *InputObject;
if (InputObject->isELF()) {
InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
if (!Dyld)
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyld::loadObject(const ObjectFile &Obj) {
if (!Dyld) {
if (Obj.isELF())
Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker);
} else if (InputObject->isMachO()) {
InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
if (!Dyld)
else if (Obj.isMachO())
Dyld = createRuntimeDyldMachO(
static_cast<Triple::ArchType>(InputImage->getArch()), MM,
ProcessAllSections, Checker);
} else
report_fatal_error("Incompatible object format!");
if (!Dyld->isCompatibleFile(&Obj))
report_fatal_error("Incompatible object format!");
return Dyld->loadObject(std::move(InputImage));
}
std::unique_ptr<ObjectImage>
RuntimeDyld::loadObject(std::unique_ptr<ObjectBuffer> InputBuffer) {
std::unique_ptr<ObjectImage> InputImage;
sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
auto *InputBufferPtr = InputBuffer.get();
switch (Type) {
case sys::fs::file_magic::elf:
case sys::fs::file_magic::elf_relocatable:
case sys::fs::file_magic::elf_executable:
case sys::fs::file_magic::elf_shared_object:
case sys::fs::file_magic::elf_core:
InputImage = RuntimeDyldELF::createObjectImage(std::move(InputBuffer));
if (!Dyld)
Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker);
break;
case sys::fs::file_magic::macho_object:
case sys::fs::file_magic::macho_executable:
case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
case sys::fs::file_magic::macho_core:
case sys::fs::file_magic::macho_preload_executable:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
case sys::fs::file_magic::macho_dynamic_linker:
case sys::fs::file_magic::macho_bundle:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
case sys::fs::file_magic::macho_dsym_companion:
InputImage = RuntimeDyldMachO::createObjectImage(std::move(InputBuffer));
if (!Dyld)
Dyld = createRuntimeDyldMachO(
static_cast<Triple::ArchType>(InputImage->getArch()), MM,
ProcessAllSections, Checker);
break;
case sys::fs::file_magic::unknown:
case sys::fs::file_magic::bitcode:
case sys::fs::file_magic::archive:
case sys::fs::file_magic::coff_object:
case sys::fs::file_magic::coff_import_library:
case sys::fs::file_magic::pecoff_executable:
case sys::fs::file_magic::macho_universal_binary:
case sys::fs::file_magic::windows_resource:
report_fatal_error("Incompatible object format!");
static_cast<Triple::ArchType>(Obj.getArch()), MM,
ProcessAllSections, Checker);
else
report_fatal_error("Incompatible object format!");
}
if (!Dyld->isCompatibleFormat(InputBufferPtr))
if (!Dyld->isCompatibleFile(Obj))
report_fatal_error("Incompatible object format!");
return Dyld->loadObject(std::move(InputImage));
return Dyld->loadObject(Obj);
}
void *RuntimeDyld::getSymbolAddress(StringRef Name) const {

View File

@ -12,27 +12,23 @@
//===----------------------------------------------------------------------===//
#include "RuntimeDyldELF.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "dyld"
namespace {
static inline std::error_code check(std::error_code Err) {
if (Err) {
report_fatal_error(Err.message());
@ -40,6 +36,8 @@ static inline std::error_code check(std::error_code Err) {
return Err;
}
namespace {
template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
@ -52,16 +50,12 @@ template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
std::unique_ptr<ObjectFile> UnderlyingFile;
public:
DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
MemoryBufferRef Wrapper, std::error_code &ec);
DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
// Methods for type inquiry through isa, cast and dyn_cast
static inline bool classof(const Binary *v) {
@ -71,42 +65,10 @@ public:
static inline bool classof(const ELFObjectFile<ELFT> *v) {
return v->isDyldType();
}
};
template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
bool Registered;
public:
ELFObjectImage(std::unique_ptr<ObjectBuffer> Input,
std::unique_ptr<DyldELFObject<ELFT>> Obj)
: ObjectImageCommon(std::move(Input), std::move(Obj)), Registered(false) {
}
virtual ~ELFObjectImage() {
if (Registered)
deregisterWithDebugger();
}
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
static_cast<DyldELFObject<ELFT>*>(getObjectFile())
->updateSectionAddress(Sec, Addr);
}
void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
static_cast<DyldELFObject<ELFT>*>(getObjectFile())
->updateSymbolAddress(Sym, Addr);
}
void registerWithDebugger() override {
JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
Registered = true;
}
void deregisterWithDebugger() override {
JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
}
};
// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory. Ultimately, the Binary parent class will take ownership of
@ -117,14 +79,6 @@ DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
this->isDyldELFObject = true;
}
template <class ELFT>
DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
MemoryBufferRef Wrapper, std::error_code &EC)
: ELFObjectFile<ELFT>(Wrapper, EC),
UnderlyingFile(std::move(UnderlyingFile)) {
this->isDyldELFObject = true;
}
template <class ELFT>
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
uint64_t Addr) {
@ -149,10 +103,89 @@ void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
sym->st_value = static_cast<addr_type>(Addr);
}
class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
public:
LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
unsigned EndIdx)
: RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
OwningBinary<ObjectFile>
getObjectForDebug(const ObjectFile &Obj) const override;
};
template <typename ELFT>
std::unique_ptr<DyldELFObject<ELFT>>
createRTDyldELFObject(MemoryBufferRef Buffer,
const LoadedELFObjectInfo &L,
std::error_code &ec) {
typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
std::unique_ptr<DyldELFObject<ELFT>> Obj =
llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
// Iterate over all sections in the object.
for (const auto &Sec : Obj->sections()) {
StringRef SectionName;
Sec.getName(SectionName);
if (SectionName != "") {
DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
// This assumes that the address passed in matches the target address
// bitness. The template-based type cast handles everything else.
shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
}
}
}
return Obj;
}
OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
const LoadedELFObjectInfo &L) {
assert(Obj.isELF() && "Not an ELF object file.");
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
std::error_code ec;
std::unique_ptr<ObjectFile> DebugObj;
if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
typedef ELFType<support::little, 2, false> ELF32LE;
DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
} else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
typedef ELFType<support::big, 2, false> ELF32BE;
DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
} else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
typedef ELFType<support::big, 2, true> ELF64BE;
DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
} else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
typedef ELFType<support::little, 2, true> ELF64LE;
DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
} else
llvm_unreachable("Unexpected ELF format");
assert(!ec && "Could not construct copy ELF object file");
return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
}
OwningBinary<ObjectFile>
LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
return createELFDebugObject(Obj, *this);
}
} // namespace
namespace llvm {
RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
RuntimeDyldELF::~RuntimeDyldELF() {}
void RuntimeDyldELF::registerEHFrames() {
if (!MemMgr)
return;
@ -180,83 +213,14 @@ void RuntimeDyldELF::deregisterEHFrames() {
RegisteredEHFrameSections.clear();
}
ObjectImage *
RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) {
if (!ObjFile)
return nullptr;
std::error_code ec;
MemoryBufferRef Buffer = ObjFile->getMemoryBufferRef();
if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
auto Obj =
llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>(
std::move(ObjFile), Buffer, ec);
return new ELFObjectImage<ELFType<support::little, 2, false>>(
nullptr, std::move(Obj));
} else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
auto Obj =
llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>(
std::move(ObjFile), Buffer, ec);
return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj));
} else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>(
std::move(ObjFile), Buffer, ec);
return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr,
std::move(Obj));
} else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
auto Obj =
llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>(
std::move(ObjFile), Buffer, ec);
return new ELFObjectImage<ELFType<support::little, 2, true>>(
nullptr, std::move(Obj));
} else
llvm_unreachable("Unexpected ELF format");
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
unsigned SectionStartIdx, SectionEndIdx;
std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
SectionEndIdx);
}
std::unique_ptr<ObjectImage>
RuntimeDyldELF::createObjectImage(std::unique_ptr<ObjectBuffer> Buffer) {
if (Buffer->getBufferSize() < ELF::EI_NIDENT)
llvm_unreachable("Unexpected ELF object size");
std::pair<unsigned char, unsigned char> Ident =
std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
(uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
std::error_code ec;
MemoryBufferRef Buf = Buffer->getMemBuffer();
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
auto Obj =
llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>(
Buf, ec);
return llvm::make_unique<
ELFObjectImage<ELFType<support::little, 4, false>>>(std::move(Buffer),
std::move(Obj));
}
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
auto Obj =
llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>(Buf,
ec);
return llvm::make_unique<ELFObjectImage<ELFType<support::big, 4, false>>>(
std::move(Buffer), std::move(Obj));
}
if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>(
Buf, ec);
return llvm::make_unique<ELFObjectImage<ELFType<support::big, 8, true>>>(
std::move(Buffer), std::move(Obj));
}
assert(Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB &&
"Unexpected ELF format");
auto Obj =
llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>(Buf,
ec);
return llvm::make_unique<ELFObjectImage<ELFType<support::little, 8, true>>>(
std::move(Buffer), std::move(Obj));
}
RuntimeDyldELF::~RuntimeDyldELF() {}
void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
uint64_t Offset, uint64_t Value,
uint32_t Type, int64_t Addend,
@ -615,7 +579,7 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
}
// Return the .TOC. section and offset.
void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel) {
// Set a default SectionID in case we do not find a TOC section below.
@ -628,7 +592,7 @@ void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
// order. The TOC starts where the first of these sections starts.
for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
si != se; ++si) {
StringRef SectionName;
@ -650,15 +614,15 @@ void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel) {
// Get the ELF symbol value (st_value) to compare with Relocation offset in
// .opd entries
for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
si != se; ++si) {
section_iterator RelSecI = si->getRelocatedSection();
if (RelSecI == Obj.end_sections())
if (RelSecI == Obj.section_end())
continue;
StringRef RelSectionName;
@ -700,7 +664,7 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
if (Rel.Addend != (int64_t)TargetSymbolOffset)
continue;
section_iterator tsi(Obj.end_sections());
section_iterator tsi(Obj.section_end());
check(TargetSymbol->getSection(tsi));
bool IsCode = tsi->isText();
Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
@ -935,7 +899,8 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
}
relocation_iterator RuntimeDyldELF::processRelocationRef(
unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
unsigned SectionID, relocation_iterator RelI,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
StubMap &Stubs) {
uint64_t RelType;
@ -946,7 +911,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
// Obtain the symbol name which is referenced in the relocation
StringRef TargetName;
if (Symbol != Obj.end_symbols())
if (Symbol != Obj.symbol_end())
Symbol->getName(TargetName);
DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
<< " TargetName: " << TargetName << "\n");
@ -954,7 +919,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.end();
SymbolRef::Type SymType = SymbolRef::ST_Unknown;
if (Symbol != Obj.end_symbols()) {
if (Symbol != Obj.symbol_end()) {
lsi = Symbols.find(TargetName.data());
Symbol->getType(SymType);
}
@ -965,7 +930,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
} else {
// Search for the symbol in the global symbol table
SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
if (Symbol != Obj.end_symbols())
if (Symbol != Obj.symbol_end())
gsi = GlobalSymbolTable.find(TargetName.data());
if (gsi != GlobalSymbolTable.end()) {
Value.SectionID = gsi->second.first;
@ -977,9 +942,9 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
// and can be changed by another developers. Maybe best way is add
// a new symbol type ST_Section to SymbolRef and use it.
section_iterator si(Obj.end_sections());
section_iterator si(Obj.section_end());
Symbol->getSection(si);
if (si == Obj.end_sections())
if (si == Obj.section_end())
llvm_unreachable("Symbol section not found, bad object file format!");
DEBUG(dbgs() << "\t\tThis is section symbol\n");
bool isCode = si->isText();
@ -1135,7 +1100,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
if (RelType == ELF::R_PPC64_REL24) {
// Determine ABI variant in use for this object.
unsigned AbiVariant;
Obj.getObjectFile()->getPlatformFlags(AbiVariant);
Obj.getPlatformFlags(AbiVariant);
AbiVariant &= ELF::EF_PPC64_ABI;
// A PPC branch relocation will need a stub function if the target is
// an external symbol (Symbol::ST_Unknown) or if the target address
@ -1495,7 +1460,7 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
return 0;
}
void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) {
// If necessary, allocate the global offset table
if (MemMgr) {
@ -1533,15 +1498,8 @@ void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
}
}
bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
return false;
return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
strlen(ELF::ElfMagic))) == 0;
}
bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
return Obj->isELF();
bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
return Obj.isELF();
}
} // namespace llvm

View File

@ -28,9 +28,11 @@ std::error_code Check(std::error_code Err) {
}
return Err;
}
} // end anonymous namespace
class RuntimeDyldELF : public RuntimeDyldImpl {
void resolveRelocation(const SectionEntry &Section, uint64_t Offset,
uint64_t Value, uint32_t Type, int64_t Addend,
uint64_t SymOffset = 0);
@ -81,9 +83,11 @@ class RuntimeDyldELF : public RuntimeDyldImpl {
return 1;
}
void findPPC64TOCSection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections,
void findPPC64TOCSection(const ObjectFile &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel);
void findOPDEntrySection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections,
void findOPDEntrySection(const ObjectFile &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel);
uint64_t findGOTEntry(uint64_t LoadAddr, uint64_t Offset);
@ -104,24 +108,23 @@ class RuntimeDyldELF : public RuntimeDyldImpl {
SmallVector<SID, 2> RegisteredEHFrameSections;
public:
RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
RuntimeDyldELF(RTDyldMemoryManager *mm);
virtual ~RuntimeDyldELF();
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile &O) override;
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override;
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID,
const ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override;
bool isCompatibleFormat(const ObjectBuffer *Buffer) const override;
bool isCompatibleFile(const object::ObjectFile *Buffer) const override;
bool isCompatibleFile(const object::ObjectFile &Obj) const override;
void registerEHFrames() override;
void deregisterEHFrames() override;
void finalizeLoad(ObjectImage &ObjImg,
void finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) override;
virtual ~RuntimeDyldELF();
static std::unique_ptr<ObjectImage>
createObjectImage(std::unique_ptr<ObjectBuffer> InputBuffer);
static ObjectImage *createObjectImageFromFile(std::unique_ptr<object::ObjectFile> Obj);
};
} // end namespace llvm

View File

@ -18,7 +18,6 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/Object/ObjectFile.h"
@ -37,7 +36,6 @@ using namespace llvm::object;
namespace llvm {
class ObjectBuffer;
class Twine;
/// SectionEntry - represents a section emitted into memory by the dynamic
@ -159,6 +157,7 @@ public:
};
class RuntimeDyldImpl {
friend class RuntimeDyld::LoadedObjectInfo;
friend class RuntimeDyldCheckerImpl;
private:
@ -296,14 +295,15 @@ protected:
/// \brief Given the common symbols discovered in the object file, emit a
/// new section for them and update the symbol mappings in the object and
/// symbol table.
void emitCommonSymbols(ObjectImage &Obj, const CommonSymbolMap &CommonSymbols,
void emitCommonSymbols(const ObjectFile &Obj,
const CommonSymbolMap &CommonSymbols,
uint64_t TotalSize, SymbolTableMap &SymbolTable);
/// \brief Emits section data from the object file to the MemoryManager.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emits, else allocateDataSection() will be used.
/// \return SectionID.
unsigned emitSection(ObjectImage &Obj, const SectionRef &Section,
unsigned emitSection(const ObjectFile &Obj, const SectionRef &Section,
bool IsCode);
/// \brief Find Section in LocalSections. If the secton is not found - emit
@ -311,7 +311,7 @@ protected:
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emmits, else allocateDataSection() will be used.
/// \return SectionID.
unsigned findOrEmitSection(ObjectImage &Obj, const SectionRef &Section,
unsigned findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section,
bool IsCode, ObjSectionToIDMap &LocalSections);
// \brief Add a relocation entry that uses the given section.
@ -339,7 +339,7 @@ protected:
/// \return Iterator to the next relocation that needs to be parsed.
virtual relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID,
const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) = 0;
/// \brief Resolve relocations to external symbols.
@ -351,13 +351,16 @@ protected:
// \brief Compute an upper bound of the memory that is required to load all
// sections
void computeTotalAllocSize(ObjectImage &Obj, uint64_t &CodeSize,
void computeTotalAllocSize(const ObjectFile &Obj, uint64_t &CodeSize,
uint64_t &DataSizeRO, uint64_t &DataSizeRW);
// \brief Compute the stub buffer size required for a section
unsigned computeSectionStubBufSize(ObjectImage &Obj,
unsigned computeSectionStubBufSize(const ObjectFile &Obj,
const SectionRef &Section);
// \brief Implementation of the generic part of the loadObject algorithm.
std::pair<unsigned, unsigned> loadObjectImpl(const object::ObjectFile &Obj);
public:
RuntimeDyldImpl(RTDyldMemoryManager *mm)
: MemMgr(mm), Checker(nullptr), ProcessAllSections(false), HasError(false) {
@ -373,8 +376,8 @@ public:
this->Checker = Checker;
}
std::unique_ptr<ObjectImage>
loadObject(std::unique_ptr<ObjectImage> InputObject);
virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile &Obj) = 0;
uint8_t* getSymbolAddress(StringRef Name) const {
// FIXME: Just look up as a function for now. Overly simple of course.
@ -411,14 +414,14 @@ public:
// Get the error message.
StringRef getErrorString() { return ErrorStr; }
virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const = 0;
virtual bool isCompatibleFile(const ObjectFile *Obj) const = 0;
virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
virtual void registerEHFrames();
virtual void deregisterEHFrames();
virtual void finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) {}
virtual void finalizeLoad(const ObjectFile &ObjImg,
ObjSectionToIDMap &SectionMap) {}
};
} // end namespace llvm

View File

@ -25,6 +25,22 @@ using namespace llvm::object;
#define DEBUG_TYPE "dyld"
namespace {
class LoadedMachOObjectInfo : public RuntimeDyld::LoadedObjectInfo {
public:
LoadedMachOObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
unsigned EndIdx)
: RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
OwningBinary<ObjectFile>
getObjectForDebug(const ObjectFile &Obj) const override {
return OwningBinary<ObjectFile>();
}
};
};
namespace llvm {
int64_t RuntimeDyldMachO::memcpyAddend(const RelocationEntry &RE) const {
@ -35,12 +51,12 @@ int64_t RuntimeDyldMachO::memcpyAddend(const RelocationEntry &RE) const {
}
RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
ObjectImage &ObjImg, const relocation_iterator &RI,
const ObjectFile &BaseTObj, const relocation_iterator &RI,
const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols) {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseTObj);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
RelocationValueRef Value;
@ -67,7 +83,7 @@ RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
} else {
SectionRef Sec = Obj.getRelocationSection(RelInfo);
bool IsCode = Sec.isText();
Value.SectionID = findOrEmitSection(ObjImg, Sec, IsCode, ObjSectionToID);
Value.SectionID = findOrEmitSection(Obj, Sec, IsCode, ObjSectionToID);
uint64_t Addr = Sec.getAddress();
Value.Offset = RE.Addend - Addr;
}
@ -76,11 +92,11 @@ RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
}
void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value,
ObjectImage &ObjImg,
const ObjectFile &BaseTObj,
const relocation_iterator &RI,
unsigned OffsetToNextPC) {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseTObj);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
@ -125,7 +141,7 @@ RuntimeDyldMachO::getSectionByAddress(const MachOObjectFile &Obj,
// Populate __pointers section.
void RuntimeDyldMachO::populateIndirectSymbolPointersSection(
MachOObjectFile &Obj,
const MachOObjectFile &Obj,
const SectionRef &PTSection,
unsigned PTSectionID) {
assert(!Obj.is64Bit() &&
@ -163,28 +179,12 @@ void RuntimeDyldMachO::populateIndirectSymbolPointersSection(
}
}
bool
RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const {
if (InputBuffer->getBufferSize() < 4)
return false;
StringRef Magic(InputBuffer->getBufferStart(), 4);
if (Magic == "\xFE\xED\xFA\xCE")
return true;
if (Magic == "\xCE\xFA\xED\xFE")
return true;
if (Magic == "\xFE\xED\xFA\xCF")
return true;
if (Magic == "\xCF\xFA\xED\xFE")
return true;
return false;
}
bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const {
return Obj->isMachO();
bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile &Obj) const {
return Obj.isMachO();
}
template <typename Impl>
void RuntimeDyldMachOCRTPBase<Impl>::finalizeLoad(ObjectImage &ObjImg,
void RuntimeDyldMachOCRTPBase<Impl>::finalizeLoad(const ObjectFile &ObjImg,
ObjSectionToIDMap &SectionMap) {
unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
@ -284,7 +284,7 @@ void RuntimeDyldMachOCRTPBase<Impl>::registerEHFrames() {
}
std::unique_ptr<RuntimeDyldMachO>
llvm::RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
switch (Arch) {
default:
llvm_unreachable("Unsupported target for RuntimeDyldMachO.");
@ -296,4 +296,12 @@ llvm::RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
}
}
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyldMachO::loadObject(const object::ObjectFile &O) {
unsigned SectionStartIdx, SectionEndIdx;
std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
return llvm::make_unique<LoadedMachOObjectInfo>(*this, SectionStartIdx,
SectionEndIdx);
}
} // end namespace llvm

View File

@ -14,7 +14,6 @@
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
#include "ObjectImageCommon.h"
#include "RuntimeDyldImpl.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Format.h"
@ -61,10 +60,11 @@ protected:
/// filled in, since immediate encodings are highly target/opcode specific.
/// For targets/opcodes with simple, contiguous immediates (e.g. X86) the
/// memcpyAddend method can be used to read the immediate.
RelocationEntry getRelocationEntry(unsigned SectionID, ObjectImage &ObjImg,
RelocationEntry getRelocationEntry(unsigned SectionID,
const ObjectFile &BaseTObj,
const relocation_iterator &RI) const {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseTObj);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
@ -87,14 +87,15 @@ protected:
/// In both cases the Addend field is *NOT* fixed up to be PC-relative. That
/// should be done by the caller where appropriate by calling makePCRel on
/// the RelocationValueRef.
RelocationValueRef getRelocationValueRef(ObjectImage &ObjImg,
RelocationValueRef getRelocationValueRef(const ObjectFile &BaseTObj,
const relocation_iterator &RI,
const RelocationEntry &RE,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols);
/// Make the RelocationValueRef addend PC-relative.
void makeValueAddendPCRel(RelocationValueRef &Value, ObjectImage &ObjImg,
void makeValueAddendPCRel(RelocationValueRef &Value,
const ObjectFile &BaseTObj,
const relocation_iterator &RI,
unsigned OffsetToNextPC);
@ -107,31 +108,22 @@ protected:
// Populate __pointers section.
void populateIndirectSymbolPointersSection(MachOObjectFile &Obj,
void populateIndirectSymbolPointersSection(const MachOObjectFile &Obj,
const SectionRef &PTSection,
unsigned PTSectionID);
public:
/// Create an ObjectImage from the given ObjectBuffer.
static std::unique_ptr<ObjectImage>
createObjectImage(std::unique_ptr<ObjectBuffer> InputBuffer) {
return llvm::make_unique<ObjectImageCommon>(std::move(InputBuffer));
}
/// Create an ObjectImage from the given ObjectFile.
static ObjectImage *
createObjectImageFromFile(std::unique_ptr<object::ObjectFile> InputObject) {
return new ObjectImageCommon(std::move(InputObject));
}
/// Create a RuntimeDyldMachO instance for the given target architecture.
static std::unique_ptr<RuntimeDyldMachO> create(Triple::ArchType Arch,
RTDyldMemoryManager *mm);
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile &O);
SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; }
bool isCompatibleFormat(const ObjectBuffer *Buffer) const override;
bool isCompatibleFile(const object::ObjectFile *Obj) const override;
bool isCompatibleFile(const object::ObjectFile &Obj) const override;
};
/// RuntimeDyldMachOTarget - Templated base class for generic MachO linker
@ -153,7 +145,7 @@ private:
public:
RuntimeDyldMachOCRTPBase(RTDyldMemoryManager *mm) : RuntimeDyldMachO(mm) {}
void finalizeLoad(ObjectImage &ObjImg,
void finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) override;
void registerEHFrames() override;
};

View File

@ -243,10 +243,11 @@ public:
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
@ -268,10 +269,10 @@ public:
RelInfo = Obj.getRelocation(RelI->getRawDataRefImpl());
}
RelocationEntry RE(getRelocationEntry(SectionID, ObjImg, RelI));
RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
RE.Addend = decodeAddend(RE);
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
getRelocationValueRef(Obj, RelI, RE, ObjSectionToID, Symbols));
assert((ExplicitAddend == 0 || RE.Addend == 0) && "Relocation has "\
"ARM64_RELOC_ADDEND and embedded addend in the instruction.");
@ -282,7 +283,7 @@ public:
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI, 1 << RE.Size);
makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
RE.Addend = Value.Offset;
@ -359,7 +360,7 @@ public:
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {}
private:

View File

@ -49,29 +49,30 @@ public:
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
if (Obj.isRelocationScattered(RelInfo)) {
if (RelType == MachO::ARM_RELOC_HALF_SECTDIFF)
return processHALFSECTDIFFRelocation(SectionID, RelI, ObjImg,
return processHALFSECTDIFFRelocation(SectionID, RelI, Obj,
ObjSectionToID);
else
return ++++RelI;
}
RelocationEntry RE(getRelocationEntry(SectionID, ObjImg, RelI));
RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
RE.Addend = decodeAddend(RE);
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
getRelocationValueRef(Obj, RelI, RE, ObjSectionToID, Symbols));
if (RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI, 8);
makeValueAddendPCRel(Value, Obj, RelI, 8);
if ((RE.RelType & 0xf) == MachO::ARM_RELOC_BR24)
processBranchRelocation(RE, Value, Stubs);
@ -154,15 +155,14 @@ public:
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {
StringRef Name;
Section.getName(Name);
if (Name == "__nl_symbol_ptr")
populateIndirectSymbolPointersSection(
cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, SectionID);
populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
Section, SectionID);
}
private:
@ -199,25 +199,25 @@ private:
relocation_iterator
processHALFSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
ObjectImage &Obj,
const ObjectFile &BaseTObj,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile *>(Obj.getObjectFile());
const MachOObjectFile &MachO =
static_cast<const MachOObjectFile&>(BaseTObj);
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
MachO.getRelocation(RelI->getRawDataRefImpl());
// For a half-diff relocation the length bits actually record whether this
// is a movw/movt, and whether this is arm or thumb.
// Bit 0 indicates movw (b0 == 0) or movt (b0 == 1).
// Bit 1 indicates arm (b1 == 0) or thumb (b1 == 1).
unsigned HalfDiffKindBits = MachO->getAnyRelocationLength(RE);
unsigned HalfDiffKindBits = MachO.getAnyRelocationLength(RE);
if (HalfDiffKindBits & 0x2)
llvm_unreachable("Thumb not yet supported.");
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
uint32_t RelocType = MachO.getAnyRelocationType(RE);
bool IsPCRel = MachO.getAnyRelocationPCRel(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
@ -226,27 +226,27 @@ private:
++RelI;
MachO::any_relocation_info RE2 =
MachO->getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = MachO->getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(*MachO, AddrA);
assert(SAI != MachO->section_end() && "Can't find section for address A");
MachO.getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = MachO.getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(MachO, AddrA);
assert(SAI != MachO.section_end() && "Can't find section for address A");
uint64_t SectionABase = SAI->getAddress();
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
bool IsCode = SectionA.isText();
uint32_t SectionAID =
findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID);
findOrEmitSection(MachO, SectionA, IsCode, ObjSectionToID);
uint32_t AddrB = MachO->getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(*MachO, AddrB);
assert(SBI != MachO->section_end() && "Can't find section for address B");
uint32_t AddrB = MachO.getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(MachO, AddrB);
assert(SBI != MachO.section_end() && "Can't find section for address B");
uint64_t SectionBBase = SBI->getAddress();
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
uint32_t SectionBID =
findOrEmitSection(Obj, SectionB, IsCode, ObjSectionToID);
findOrEmitSection(MachO, SectionB, IsCode, ObjSectionToID);
uint32_t OtherHalf = MachO->getAnyRelocationAddress(RE2) & 0xffff;
uint32_t OtherHalf = MachO.getAnyRelocationAddress(RE2) & 0xffff;
unsigned Shift = (HalfDiffKindBits & 0x1) ? 16 : 0;
uint32_t FullImmVal = (Immediate << Shift) | (OtherHalf << (16 - Shift));
int64_t Addend = FullImmVal - (AddrA - AddrB);

View File

@ -31,10 +31,11 @@ public:
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
@ -42,18 +43,18 @@ public:
if (Obj.isRelocationScattered(RelInfo)) {
if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
return processSECTDIFFRelocation(SectionID, RelI, ObjImg,
return processSECTDIFFRelocation(SectionID, RelI, Obj,
ObjSectionToID);
else if (RelType == MachO::GENERIC_RELOC_VANILLA)
return processI386ScatteredVANILLA(SectionID, RelI, ObjImg,
return processI386ScatteredVANILLA(SectionID, RelI, Obj,
ObjSectionToID);
llvm_unreachable("Unhandled scattered relocation.");
}
RelocationEntry RE(getRelocationEntry(SectionID, ObjImg, RelI));
RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
RE.Addend = memcpyAddend(RE);
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
getRelocationValueRef(Obj, RelI, RE, ObjSectionToID, Symbols));
// Addends for external, PC-rel relocations on i386 point back to the zero
// offset. Calculate the final offset from the relocation target instead.
@ -66,7 +67,7 @@ public:
// Value.Addend += RelocAddr + 4;
// }
if (RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI, 1 << RE.Size);
makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
RE.Addend = Value.Offset;
@ -110,34 +111,32 @@ public:
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {
StringRef Name;
Section.getName(Name);
if (Name == "__jump_table")
populateJumpTable(cast<MachOObjectFile>(*ObjImg.getObjectFile()), Section,
SectionID);
populateJumpTable(cast<MachOObjectFile>(Obj), Section, SectionID);
else if (Name == "__pointers")
populateIndirectSymbolPointersSection(
cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, SectionID);
populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
Section, SectionID);
}
private:
relocation_iterator
processSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
ObjectImage &Obj,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile *>(Obj.getObjectFile());
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile&>(BaseObjT);
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
Obj.getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint32_t RelocType = Obj.getAnyRelocationType(RE);
bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
unsigned Size = Obj.getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
@ -146,11 +145,11 @@ private:
++RelI;
MachO::any_relocation_info RE2 =
MachO->getRelocation(RelI->getRawDataRefImpl());
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = MachO->getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(*MachO, AddrA);
assert(SAI != MachO->section_end() && "Can't find section for address A");
uint32_t AddrA = Obj.getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(Obj, AddrA);
assert(SAI != Obj.section_end() && "Can't find section for address A");
uint64_t SectionABase = SAI->getAddress();
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
@ -158,9 +157,9 @@ private:
uint32_t SectionAID =
findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID);
uint32_t AddrB = MachO->getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(*MachO, AddrB);
assert(SBI != MachO->section_end() && "Can't find section for address B");
uint32_t AddrB = Obj.getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(Obj, AddrB);
assert(SBI != Obj.section_end() && "Can't find section for address B");
uint64_t SectionBBase = SBI->getAddress();
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
@ -186,26 +185,27 @@ private:
}
relocation_iterator processI386ScatteredVANILLA(
unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
unsigned SectionID, relocation_iterator RelI,
const ObjectFile &BaseObjT,
RuntimeDyldMachO::ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile *>(Obj.getObjectFile());
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile&>(BaseObjT);
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
Obj.getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint32_t RelocType = Obj.getAnyRelocationType(RE);
bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
unsigned Size = Obj.getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = readBytesUnaligned(LocalAddress, NumBytes);
unsigned SymbolBaseAddr = MachO->getScatteredRelocationValue(RE);
section_iterator TargetSI = getSectionByAddress(*MachO, SymbolBaseAddr);
assert(TargetSI != MachO->section_end() && "Can't find section for symbol");
unsigned SymbolBaseAddr = Obj.getScatteredRelocationValue(RE);
section_iterator TargetSI = getSectionByAddress(Obj, SymbolBaseAddr);
assert(TargetSI != Obj.section_end() && "Can't find section for symbol");
uint64_t SectionBaseAddr = TargetSI->getAddress();
SectionRef TargetSection = *TargetSI;
bool IsCode = TargetSection.isText();
@ -221,7 +221,7 @@ private:
}
// Populate stubs in __jump_table section.
void populateJumpTable(MachOObjectFile &Obj, const SectionRef &JTSection,
void populateJumpTable(const MachOObjectFile &Obj, const SectionRef &JTSection,
unsigned JTSectionID) {
assert(!Obj.is64Bit() &&
"__jump_table section not supported in 64-bit MachO.");

View File

@ -31,24 +31,25 @@ public:
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols, StubMap &Stubs) override {
const MachOObjectFile &Obj =
static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
assert(!Obj.isRelocationScattered(RelInfo) &&
"Scattered relocations not supported on X86_64");
RelocationEntry RE(getRelocationEntry(SectionID, ObjImg, RelI));
RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
RE.Addend = memcpyAddend(RE);
RelocationValueRef Value(
getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
getRelocationValueRef(Obj, RelI, RE, ObjSectionToID, Symbols));
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
makeValueAddendPCRel(Value, ObjImg, RelI, 1 << RE.Size);
makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
if (RE.RelType == MachO::X86_64_RELOC_GOT ||
RE.RelType == MachO::X86_64_RELOC_GOT_LOAD)
@ -97,7 +98,7 @@ public:
}
}
void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {}
private:

View File

@ -14,7 +14,6 @@
#include "RemoteMemoryManager.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
@ -78,7 +77,7 @@ sys::MemoryBlock RemoteMemoryManager::allocateSection(uintptr_t Size) {
}
void RemoteMemoryManager::notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *Obj) {
const object::ObjectFile &Obj) {
// The client should have called setRemoteTarget() before triggering any
// code generation.
assert(Target);

View File

@ -80,7 +80,8 @@ public:
// symbols from Modules it contains.
uint64_t getSymbolAddress(const std::string &Name) override { return 0; }
void notifyObjectLoaded(ExecutionEngine *EE, const ObjectImage *Obj) override;
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &Obj) override;
bool finalizeMemory(std::string *ErrMsg) override;

View File

@ -19,10 +19,10 @@
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"

View File

@ -13,8 +13,6 @@
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
@ -207,23 +205,32 @@ static int printLineInfoForInput() {
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
std::unique_ptr<ObjectImage> LoadedObject;
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
// Load the object file
LoadedObject = Dyld.loadObject(
llvm::make_unique<ObjectBuffer>(std::move(*InputBuffer)));
if (!LoadedObject) {
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo =
Dyld.loadObject(Obj);
if (Dyld.hasError())
return Error(Dyld.getErrorString());
}
// Resolve all the relocations we can.
Dyld.resolveRelocations();
OwningBinary<ObjectFile> DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
std::unique_ptr<DIContext> Context(
DIContext::getDWARFContext(*LoadedObject->getObjectFile()));
DIContext::getDWARFContext(*DebugObj.getBinary()));
// Use symbol info to iterate functions in the object.
for (object::symbol_iterator I = LoadedObject->begin_symbols(),
E = LoadedObject->end_symbols();
for (object::symbol_iterator I = DebugObj.getBinary()->symbol_begin(),
E = DebugObj.getBinary()->symbol_end();
I != E; ++I) {
object::SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
@ -268,11 +275,17 @@ static int executeInput() {
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
std::unique_ptr<ObjectImage> LoadedObject;
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
// Load the object file
LoadedObject = Dyld.loadObject(
llvm::make_unique<ObjectBuffer>(std::move(*InputBuffer)));
if (!LoadedObject) {
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
return Error(Dyld.getErrorString());
}
}
@ -512,14 +525,21 @@ static int linkAndVerify() {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
std::unique_ptr<ObjectImage> LoadedObject;
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
// Load the object file
LoadedObject = Dyld.loadObject(
llvm::make_unique<ObjectBuffer>(std::move(*InputBuffer)));
if (!LoadedObject) {
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
return Error(Dyld.getErrorString());
}
}