mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
Move some methods around so that BU specific code is together, TD specific code
is together, and direction independent code is together. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26712 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
309cf8a713
commit
7d82b00048
@ -217,252 +217,9 @@ SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
|
||||
return &SUnits.back();
|
||||
}
|
||||
|
||||
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
||||
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain) {
|
||||
// FIXME: the distance between two nodes is not always == the predecessor's
|
||||
// latency. For example, the reader can very well read the register written
|
||||
// by the predecessor later than the issue cycle. It also depends on the
|
||||
// interrupt model (drain vs. freeze).
|
||||
PredSU->CycleBound = std::max(PredSU->CycleBound,CurrCycle + PredSU->Latency);
|
||||
|
||||
if (!isChain)
|
||||
PredSU->NumSuccsLeft--;
|
||||
else
|
||||
PredSU->NumChainSuccsLeft--;
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
PredSU->dump(&DAG);
|
||||
std::cerr << " has been released too many times!\n";
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
|
||||
// EntryToken has to go last! Special case it here.
|
||||
if (PredSU->Node->getOpcode() != ISD::EntryToken) {
|
||||
PredSU->isAvailable = true;
|
||||
PriorityQueue->push(PredSU);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
|
||||
// FIXME: the distance between two nodes is not always == the predecessor's
|
||||
// latency. For example, the reader can very well read the register written
|
||||
// by the predecessor later than the issue cycle. It also depends on the
|
||||
// interrupt model (drain vs. freeze).
|
||||
SuccSU->CycleBound = std::max(SuccSU->CycleBound,CurrCycle + SuccSU->Latency);
|
||||
|
||||
if (!isChain)
|
||||
SuccSU->NumPredsLeft--;
|
||||
else
|
||||
SuccSU->NumChainPredsLeft--;
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
SuccSU->dump(&DAG);
|
||||
std::cerr << " has been released too many times!\n";
|
||||
abort();
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
|
||||
SuccSU->isAvailable = true;
|
||||
PriorityQueue->push(SuccSU);
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU) {
|
||||
DEBUG(std::cerr << "*** Scheduling: ");
|
||||
DEBUG(SU->dump(&DAG));
|
||||
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Bottom up: release predecessors
|
||||
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
|
||||
E = SU->Preds.end(); I != E; ++I) {
|
||||
ReleasePred(I->first, I->second);
|
||||
if (!I->second)
|
||||
SU->NumPredsLeft--;
|
||||
}
|
||||
CurrCycle++;
|
||||
}
|
||||
|
||||
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
||||
/// count of its successors. If a successor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU) {
|
||||
DEBUG(std::cerr << "*** Scheduling: ");
|
||||
DEBUG(SU->dump(&DAG));
|
||||
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Bottom up: release successors.
|
||||
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
|
||||
E = SU->Succs.end(); I != E; ++I) {
|
||||
ReleaseSucc(I->first, I->second);
|
||||
if (!I->second)
|
||||
SU->NumSuccsLeft--;
|
||||
}
|
||||
CurrCycle++;
|
||||
}
|
||||
|
||||
/// isReady - True if node's lower cycle bound is less or equal to the current
|
||||
/// scheduling cycle. Always true if all nodes have uniform latency 1.
|
||||
static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
|
||||
return SU->CycleBound <= CurrCycle;
|
||||
}
|
||||
|
||||
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleBottomUp() {
|
||||
// Add root to Available queue.
|
||||
PriorityQueue->push(SUnitMap[DAG.getRoot().Val]);
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
while (!PriorityQueue->empty()) {
|
||||
SUnit *CurrNode = PriorityQueue->pop();
|
||||
|
||||
while (!isReady(CurrNode, CurrCycle)) {
|
||||
NotReady.push_back(CurrNode);
|
||||
CurrNode = PriorityQueue->pop();
|
||||
}
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
PriorityQueue->push_all(NotReady);
|
||||
NotReady.clear();
|
||||
|
||||
ScheduleNodeBottomUp(CurrNode);
|
||||
CurrNode->isScheduled = true;
|
||||
PriorityQueue->ScheduledNode(CurrNode);
|
||||
}
|
||||
|
||||
// Add entry node last
|
||||
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
Sequence.push_back(Entry);
|
||||
}
|
||||
|
||||
// Reverse the order if it is bottom up.
|
||||
std::reverse(Sequence.begin(), Sequence.end());
|
||||
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Verify that all SUnits were scheduled.
|
||||
bool AnyNotSched = false;
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
|
||||
if (!AnyNotSched)
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
SUnits[i].dump(&DAG);
|
||||
std::cerr << "has not been scheduled!\n";
|
||||
AnyNotSched = true;
|
||||
}
|
||||
}
|
||||
assert(!AnyNotSched);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleTopDown() {
|
||||
// Emit the entry node first.
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
ScheduleNodeTopDown(Entry);
|
||||
HazardRec->EmitInstruction(Entry->Node);
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// It is available if it has no predecessors.
|
||||
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry)
|
||||
PriorityQueue->push(&SUnits[i]);
|
||||
}
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
while (!PriorityQueue->empty()) {
|
||||
SUnit *FoundNode = 0;
|
||||
|
||||
bool HasNoopHazards = false;
|
||||
do {
|
||||
SUnit *CurNode = PriorityQueue->pop();
|
||||
|
||||
// Get the node represented by this SUnit.
|
||||
SDNode *N = CurNode->Node;
|
||||
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
||||
// real target node flagged to it. If so, use the target node.
|
||||
for (unsigned i = 0, e = CurNode->FlaggedNodes.size();
|
||||
N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
|
||||
N = CurNode->FlaggedNodes[i];
|
||||
|
||||
HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
|
||||
if (HT == HazardRecognizer::NoHazard) {
|
||||
FoundNode = CurNode;
|
||||
break;
|
||||
}
|
||||
|
||||
// Remember if this is a noop hazard.
|
||||
HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
|
||||
|
||||
NotReady.push_back(CurNode);
|
||||
} while (!PriorityQueue->empty());
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
PriorityQueue->push_all(NotReady);
|
||||
NotReady.clear();
|
||||
|
||||
// If we found a node to schedule, do it now.
|
||||
if (FoundNode) {
|
||||
ScheduleNodeTopDown(FoundNode);
|
||||
HazardRec->EmitInstruction(FoundNode->Node);
|
||||
FoundNode->isScheduled = true;
|
||||
PriorityQueue->ScheduledNode(FoundNode);
|
||||
} else if (!HasNoopHazards) {
|
||||
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
||||
// the current cycle and try again.
|
||||
DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
|
||||
HazardRec->AdvanceCycle();
|
||||
++NumStalls;
|
||||
} else {
|
||||
// Otherwise, we have no instructions to issue and we have instructions
|
||||
// that will fault if we don't do this right. This is the case for
|
||||
// processors without pipeline interlocks and other cases.
|
||||
DEBUG(std::cerr << "*** Emitting noop\n");
|
||||
HazardRec->EmitNoop();
|
||||
Sequence.push_back(0); // NULL SUnit* -> noop
|
||||
++NumNoops;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Verify that all SUnits were scheduled.
|
||||
bool AnyNotSched = false;
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
|
||||
if (!AnyNotSched)
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
SUnits[i].dump(&DAG);
|
||||
std::cerr << "has not been scheduled!\n";
|
||||
AnyNotSched = true;
|
||||
}
|
||||
}
|
||||
assert(!AnyNotSched);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
|
||||
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
|
||||
/// together nodes with a single SUnit.
|
||||
void ScheduleDAGList::BuildSchedUnits() {
|
||||
// Reserve entries in the vector for each of the SUnits we are creating. This
|
||||
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
|
||||
@ -649,6 +406,258 @@ void ScheduleDAGList::Schedule() {
|
||||
EmitSchedule();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Bottom-Up Scheduling
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
||||
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain) {
|
||||
// FIXME: the distance between two nodes is not always == the predecessor's
|
||||
// latency. For example, the reader can very well read the register written
|
||||
// by the predecessor later than the issue cycle. It also depends on the
|
||||
// interrupt model (drain vs. freeze).
|
||||
PredSU->CycleBound = std::max(PredSU->CycleBound,CurrCycle + PredSU->Latency);
|
||||
|
||||
if (!isChain)
|
||||
PredSU->NumSuccsLeft--;
|
||||
else
|
||||
PredSU->NumChainSuccsLeft--;
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
PredSU->dump(&DAG);
|
||||
std::cerr << " has been released too many times!\n";
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
|
||||
// EntryToken has to go last! Special case it here.
|
||||
if (PredSU->Node->getOpcode() != ISD::EntryToken) {
|
||||
PredSU->isAvailable = true;
|
||||
PriorityQueue->push(PredSU);
|
||||
}
|
||||
}
|
||||
}
|
||||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU) {
|
||||
DEBUG(std::cerr << "*** Scheduling: ");
|
||||
DEBUG(SU->dump(&DAG));
|
||||
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Bottom up: release predecessors
|
||||
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
|
||||
E = SU->Preds.end(); I != E; ++I) {
|
||||
ReleasePred(I->first, I->second);
|
||||
if (!I->second)
|
||||
SU->NumPredsLeft--;
|
||||
}
|
||||
CurrCycle++;
|
||||
}
|
||||
|
||||
/// isReady - True if node's lower cycle bound is less or equal to the current
|
||||
/// scheduling cycle. Always true if all nodes have uniform latency 1.
|
||||
static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
|
||||
return SU->CycleBound <= CurrCycle;
|
||||
}
|
||||
|
||||
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleBottomUp() {
|
||||
// Add root to Available queue.
|
||||
PriorityQueue->push(SUnitMap[DAG.getRoot().Val]);
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
while (!PriorityQueue->empty()) {
|
||||
SUnit *CurrNode = PriorityQueue->pop();
|
||||
|
||||
while (!isReady(CurrNode, CurrCycle)) {
|
||||
NotReady.push_back(CurrNode);
|
||||
CurrNode = PriorityQueue->pop();
|
||||
}
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
PriorityQueue->push_all(NotReady);
|
||||
NotReady.clear();
|
||||
|
||||
ScheduleNodeBottomUp(CurrNode);
|
||||
CurrNode->isScheduled = true;
|
||||
PriorityQueue->ScheduledNode(CurrNode);
|
||||
}
|
||||
|
||||
// Add entry node last
|
||||
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
Sequence.push_back(Entry);
|
||||
}
|
||||
|
||||
// Reverse the order if it is bottom up.
|
||||
std::reverse(Sequence.begin(), Sequence.end());
|
||||
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Verify that all SUnits were scheduled.
|
||||
bool AnyNotSched = false;
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
|
||||
if (!AnyNotSched)
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
SUnits[i].dump(&DAG);
|
||||
std::cerr << "has not been scheduled!\n";
|
||||
AnyNotSched = true;
|
||||
}
|
||||
}
|
||||
assert(!AnyNotSched);
|
||||
#endif
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Top-Down Scheduling
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
|
||||
// FIXME: the distance between two nodes is not always == the predecessor's
|
||||
// latency. For example, the reader can very well read the register written
|
||||
// by the predecessor later than the issue cycle. It also depends on the
|
||||
// interrupt model (drain vs. freeze).
|
||||
SuccSU->CycleBound = std::max(SuccSU->CycleBound,CurrCycle + SuccSU->Latency);
|
||||
|
||||
if (!isChain)
|
||||
SuccSU->NumPredsLeft--;
|
||||
else
|
||||
SuccSU->NumChainPredsLeft--;
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
SuccSU->dump(&DAG);
|
||||
std::cerr << " has been released too many times!\n";
|
||||
abort();
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
|
||||
SuccSU->isAvailable = true;
|
||||
PriorityQueue->push(SuccSU);
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
||||
/// count of its successors. If a successor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU) {
|
||||
DEBUG(std::cerr << "*** Scheduling: ");
|
||||
DEBUG(SU->dump(&DAG));
|
||||
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Bottom up: release successors.
|
||||
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
|
||||
E = SU->Succs.end(); I != E; ++I) {
|
||||
ReleaseSucc(I->first, I->second);
|
||||
if (!I->second)
|
||||
SU->NumSuccsLeft--;
|
||||
}
|
||||
CurrCycle++;
|
||||
}
|
||||
|
||||
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleTopDown() {
|
||||
// Emit the entry node first.
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
ScheduleNodeTopDown(Entry);
|
||||
HazardRec->EmitInstruction(Entry->Node);
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// It is available if it has no predecessors.
|
||||
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry)
|
||||
PriorityQueue->push(&SUnits[i]);
|
||||
}
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
while (!PriorityQueue->empty()) {
|
||||
SUnit *FoundNode = 0;
|
||||
|
||||
bool HasNoopHazards = false;
|
||||
do {
|
||||
SUnit *CurNode = PriorityQueue->pop();
|
||||
|
||||
// Get the node represented by this SUnit.
|
||||
SDNode *N = CurNode->Node;
|
||||
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
||||
// real target node flagged to it. If so, use the target node.
|
||||
for (unsigned i = 0, e = CurNode->FlaggedNodes.size();
|
||||
N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
|
||||
N = CurNode->FlaggedNodes[i];
|
||||
|
||||
HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
|
||||
if (HT == HazardRecognizer::NoHazard) {
|
||||
FoundNode = CurNode;
|
||||
break;
|
||||
}
|
||||
|
||||
// Remember if this is a noop hazard.
|
||||
HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
|
||||
|
||||
NotReady.push_back(CurNode);
|
||||
} while (!PriorityQueue->empty());
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
PriorityQueue->push_all(NotReady);
|
||||
NotReady.clear();
|
||||
|
||||
// If we found a node to schedule, do it now.
|
||||
if (FoundNode) {
|
||||
ScheduleNodeTopDown(FoundNode);
|
||||
HazardRec->EmitInstruction(FoundNode->Node);
|
||||
FoundNode->isScheduled = true;
|
||||
PriorityQueue->ScheduledNode(FoundNode);
|
||||
} else if (!HasNoopHazards) {
|
||||
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
||||
// the current cycle and try again.
|
||||
DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
|
||||
HazardRec->AdvanceCycle();
|
||||
++NumStalls;
|
||||
} else {
|
||||
// Otherwise, we have no instructions to issue and we have instructions
|
||||
// that will fault if we don't do this right. This is the case for
|
||||
// processors without pipeline interlocks and other cases.
|
||||
DEBUG(std::cerr << "*** Emitting noop\n");
|
||||
HazardRec->EmitNoop();
|
||||
Sequence.push_back(0); // NULL SUnit* -> noop
|
||||
++NumNoops;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Verify that all SUnits were scheduled.
|
||||
bool AnyNotSched = false;
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
|
||||
if (!AnyNotSched)
|
||||
std::cerr << "*** List scheduling failed! ***\n";
|
||||
SUnits[i].dump(&DAG);
|
||||
std::cerr << "has not been scheduled!\n";
|
||||
AnyNotSched = true;
|
||||
}
|
||||
}
|
||||
assert(!AnyNotSched);
|
||||
#endif
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// RegReductionPriorityQueue Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
Loading…
x
Reference in New Issue
Block a user