1. Move most of the constant-fixup code into machine-independent file

InstrSelectionSupport.cpp.  It now happens in a bottom-up pass on
   each BURG tree after the original top-down selection pass on the tree.
2. Handle global values as constants (viz., constant addresses).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@868 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-10-18 00:26:20 +00:00
parent 8f1afbf3b3
commit 7fe27874be

View File

@ -11,6 +11,7 @@
//**************************************************************************/ //**************************************************************************/
#include "SparcInternals.h" #include "SparcInternals.h"
#include "SparcInstrSelectionSupport.h"
#include "llvm/CodeGen/InstrSelectionSupport.h" #include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrForest.h" #include "llvm/CodeGen/InstrForest.h"
@ -48,46 +49,6 @@ static void SetMemOperands_Internal (MachineInstr* minstr,
//************************ Internal Functions ******************************/ //************************ Internal Functions ******************************/
// Convenience function to get the value of an integer constant, for an
// appropriate integer or non-integer type that can be held in an integer.
// The type of the argument must be the following:
// Signed or unsigned integer
// Boolean
// Pointer
//
// isValidConstant is set to true if a valid constant was found.
//
static int64_t
GetConstantValueAsSignedInt(const Value *V,
bool &isValidConstant)
{
if (!isa<ConstPoolVal>(V))
{
isValidConstant = false;
return 0;
}
isValidConstant = true;
if (V->getType() == Type::BoolTy)
return (int64_t) ((ConstPoolBool*)V)->getValue();
if (V->getType()->isIntegral())
{
if (V->getType()->isSigned())
return ((ConstPoolSInt*)V)->getValue();
assert(V->getType()->isUnsigned());
uint64_t Val = ((ConstPoolUInt*)V)->getValue();
if (Val < INT64_MAX) // then safe to cast to signed
return (int64_t)Val;
}
isValidConstant = false;
return 0;
}
//------------------------------------------------------------------------ //------------------------------------------------------------------------
// External Function: ThisIsAChainRule // External Function: ThisIsAChainRule
@ -778,52 +739,6 @@ CreateDivConstInstruction(TargetMachine &target,
} }
static inline MachineOpCode
ChooseLoadInstruction(const Type *DestTy)
{
switch (DestTy->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID: return LDUB;
case Type::SByteTyID: return LDSB;
case Type::UShortTyID: return LDUH;
case Type::ShortTyID: return LDSH;
case Type::UIntTyID: return LDUW;
case Type::IntTyID: return LDSW;
case Type::PointerTyID:
case Type::ULongTyID:
case Type::LongTyID: return LDX;
case Type::FloatTyID: return LD;
case Type::DoubleTyID: return LDD;
default: assert(0 && "Invalid type for Load instruction");
}
return 0;
}
static inline MachineOpCode
ChooseStoreInstruction(const Type *DestTy)
{
switch (DestTy->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: return STB;
case Type::UShortTyID:
case Type::ShortTyID: return STH;
case Type::UIntTyID:
case Type::IntTyID: return STW;
case Type::PointerTyID:
case Type::ULongTyID:
case Type::LongTyID: return STX;
case Type::FloatTyID: return ST;
case Type::DoubleTyID: return STD;
default: assert(0 && "Invalid type for Store instruction");
}
return 0;
}
//------------------------------------------------------------------------ //------------------------------------------------------------------------
// Function SetOperandsForMemInstr // Function SetOperandsForMemInstr
// //
@ -1003,277 +918,6 @@ SetMemOperands_Internal(MachineInstr* minstr,
} }
static inline MachineInstr*
CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
{
MachineInstr* minstr;
if (isSigned)
{
minstr = new MachineInstr(SETSW);
minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
}
else
{
minstr = new MachineInstr(SETUW);
minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
}
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
return minstr;
}
// Create an instruction sequence to load a constant into a register.
// This always creates either one or two instructions.
// If two instructions are created, the second one is returned in getMinstr2
//
static MachineInstr*
CreateLoadConstInstr(const TargetMachine &target,
Instruction* vmInstr,
Value* val,
Instruction* dest,
MachineInstr*& getMinstr2)
{
assert(isa<ConstPoolVal>(val));
MachineInstr* minstr1 = NULL;
getMinstr2 = NULL;
// Use a "set" instruction for known constants that can go in an integer reg.
// Use a "set" instruction followed by a int-to-float conversion for known
// constants that must go in a floating point reg but have an integer value.
// Use a "load" instruction for all other constants, in particular,
// floating point constants.
//
const Type* valType = val->getType();
if (valType->isIntegral() || valType == Type::BoolTy)
{
bool isValidConstant;
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
assert(isValidConstant && "Unrecognized constant");
minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
}
else
{
#undef MOVE_INT_TO_FP_REG_AVAILABLE
#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
//
// This code was written to generate the following sequence:
// SET[SU]W <int-const> <int-reg>
// FITO[SD] <int-reg> <fp-reg>
// (it really should have moved the int-reg to an fp-reg and then FITOS).
// But for now the only way to move a value from an int-reg to an fp-reg
// is via memory. Leave this code here but unused.
//
assert(valType == Type::FloatTy || valType == Type::DoubleTy);
double dval = ((ConstPoolFP*) val)->getValue();
if (dval == (int64_t) dval)
{
// The constant actually has an integer value, so use a
// [set; int-to-float] sequence instead of a load instruction.
//
TmpInstruction* addrReg = NULL;
if (dval != 0.0)
{ // First, create an integer constant of the same value as dval
ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
(int64_t) dval);
// Create another TmpInstruction for the hidden integer register
addrReg = new TmpInstruction(Instruction::UserOp1, ival, NULL);
vmInstr->getMachineInstrVec().addTempValue(addrReg);
// Create the `SET' instruction
minstr1 = CreateIntSetInstruction((int64_t)dval, true, addrReg);
addrReg->addMachineInstruction(minstr1);
}
// In which variable do we put the second instruction?
MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
// Create the int-to-float instruction
instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
if (dval == 0.0)
instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
else
instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
addrReg);
instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
dest);
}
else
#endif /*MOVE_INT_TO_FP_REG_AVAILABLE*/
{
// Make an instruction sequence to load the constant, viz:
// SETSW <addr-of-constant>, addrReg
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
// set the offset field to 0.
//
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
// Create another TmpInstruction for the hidden integer register
TmpInstruction* addrReg =
new TmpInstruction(Instruction::UserOp1, val, NULL);
vmInstr->getMachineInstrVec().addTempValue(addrReg);
minstr1 = new MachineInstr(SETUW);
minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
addrReg);
addrReg->addMachineInstruction(minstr1);
getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
addrReg);
getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
zeroOffset);
getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
dest);
}
}
assert(minstr1);
return minstr1;
}
TmpInstruction*
InsertCodeToLoadConstant(ConstPoolVal* opValue,
Instruction* vmInstr,
vector<MachineInstr*>& loadConstVec,
TargetMachine& target)
{
// value is constant and must be loaded into a register.
// First, create a tmp virtual register (TmpInstruction)
// to hold the constant.
// This will replace the constant operand in `minstr'.
TmpInstruction* tmpReg =
new TmpInstruction(Instruction::UserOp1, opValue, NULL);
vmInstr->getMachineInstrVec().addTempValue(tmpReg);
MachineInstr *minstr1, *minstr2;
minstr1 = CreateLoadConstInstr(target, vmInstr,
opValue, tmpReg, minstr2);
loadConstVec.push_back(minstr1);
if (minstr2 != NULL)
loadConstVec.push_back(minstr2);
tmpReg->addMachineInstruction(loadConstVec.back());
return tmpReg;
}
// Special handling for constant operands:
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant is of float or double type but has an integer value,
// use int-to-float conversion instruction instead of generating a load;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else insert instructions to put the constant into a register, either
// directly or by loading explicitly from the constant pool.
//
static unsigned
FixConstantOperands(const InstructionNode* vmInstrNode,
MachineInstr** mvec,
unsigned numInstr,
TargetMachine& target)
{
vector<MachineInstr*> loadConstVec;
loadConstVec.reserve(MAX_INSTR_PER_VMINSTR);
Instruction* vmInstr = vmInstrNode->getInstruction();
for (unsigned i=0; i < numInstr; i++)
{
MachineInstr* minstr = mvec[i];
const MachineInstrDescriptor& instrDesc =
target.getInstrInfo().getDescriptor(minstr->getOpCode());
for (unsigned op=0; op < minstr->getNumOperands(); op++)
{
const MachineOperand& mop = minstr->getOperand(op);
// skip the result position (for efficiency below) and any other
// positions already marked as not a virtual register
if (instrDesc.resultPos == (int) op ||
mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
mop.getVRegValue() == NULL)
{
continue;
}
Value* opValue = mop.getVRegValue();
if (isa<ConstPoolVal>(opValue))
{
unsigned int machineRegNum;
int64_t immedValue;
MachineOperand::MachineOperandType opType =
ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
/*canUseImmed*/ (op == 1),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperand(op, machineRegNum);
else if (opType == MachineOperand::MO_VirtualRegister)
{
TmpInstruction* tmpReg =
InsertCodeToLoadConstant((ConstPoolVal*) opValue,
vmInstr, loadConstVec, target);
minstr->SetMachineOperand(op, opType, tmpReg);
}
else
minstr->SetMachineOperand(op, opType, immedValue);
}
}
//
// Also, check for implicit operands used (not those defined) by the
// machine instruction. These include:
// -- arguments to a Call
// -- return value of a Return
// Any such operand that is a constant value needs to be fixed also.
// The current instructions with implicit refs (viz., Call and Return)
// have no immediate fields, so the constant always needs to be loaded
// into a register.
//
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
if (isa<ConstPoolVal>(minstr->getImplicitRef(i)))
{
TmpInstruction* tmpReg = InsertCodeToLoadConstant((ConstPoolVal*)
minstr->getImplicitRef(i),
vmInstr, loadConstVec, target);
minstr->setImplicitRef(i, tmpReg);
}
}
//
// Finally, inserted the generated instructions in the vector
// to be returned.
//
unsigned numNew = loadConstVec.size();
if (numNew > 0)
{
// Insert the new instructions *before* the old ones by moving
// the old ones over `numNew' positions (last-to-first, of course!).
// We do check *after* returning that we did not exceed the vector mvec.
for (int i=numInstr-1; i >= 0; i--)
mvec[i+numNew] = mvec[i];
for (unsigned i=0; i < numNew; i++)
mvec[i] = loadConstVec[i];
}
return (numInstr + numNew);
}
// //
// Substitute operand `operandNum' of the instruction in node `treeNode' // Substitute operand `operandNum' of the instruction in node `treeNode'
// in place of the use(s) of that instruction in node `parent'. // in place of the use(s) of that instruction in node `parent'.
@ -1321,15 +965,13 @@ ForwardOperand(InstructionNode* treeNode,
} }
MachineInstr* void
CreateCopyInstructionsByType(const TargetMachine& target, CreateCopyInstructionsByType(const TargetMachine& target,
Value* src, Value* src,
Instruction* dest, Instruction* dest,
MachineInstr*& getMinstr2) vector<MachineInstr*>& minstrVec)
{ {
getMinstr2 = NULL; // initialize second return value bool loadConstantToReg = false;
MachineInstr* minstr1 = NULL;
const Type* resultType = dest->getType(); const Type* resultType = dest->getType();
@ -1337,11 +979,13 @@ CreateCopyInstructionsByType(const TargetMachine& target,
if (opCode == INVALID_OPCODE) if (opCode == INVALID_OPCODE)
{ {
assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
return NULL; return;
} }
// if `src' is a constant that doesn't fit in the immed field, generate // if `src' is a constant that doesn't fit in the immed field or if it is
// a load instruction instead of an add // a global variable (i.e., a constant address), generate a load
// instruction instead of an add
//
if (isa<ConstPoolVal>(src)) if (isa<ConstPoolVal>(src))
{ {
unsigned int machineRegNum; unsigned int machineRegNum;
@ -1351,12 +995,20 @@ CreateCopyInstructionsByType(const TargetMachine& target,
machineRegNum, immedValue); machineRegNum, immedValue);
if (opType == MachineOperand::MO_VirtualRegister) if (opType == MachineOperand::MO_VirtualRegister)
{ // value is constant and cannot fit in immed field for the ADD loadConstantToReg = true;
minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
}
} }
else if (isa<GlobalValue>(src))
loadConstantToReg = true;
if (minstr1 == NULL) if (loadConstantToReg)
{ // `src' is constant and cannot fit in immed field for the ADD
// Insert instructions to "load" the constant into a register
vector<TmpInstruction*> tempVec;
target.getInstrInfo().CreateCodeToLoadConst(src,dest,minstrVec,tempVec);
for (unsigned i=0; i < tempVec.size(); i++)
dest->getMachineInstrVec().addTempValue(tempVec[i]);
}
else
{ // Create the appropriate add instruction. { // Create the appropriate add instruction.
// Make `src' the second operand, in case it is a constant // Make `src' the second operand, in case it is a constant
// Use (unsigned long) 0 for a NULL pointer value. // Use (unsigned long) 0 for a NULL pointer value.
@ -1364,14 +1016,13 @@ CreateCopyInstructionsByType(const TargetMachine& target,
const Type* nullValueType = const Type* nullValueType =
(resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
: resultType; : resultType;
minstr1 = new MachineInstr(opCode); MachineInstr* minstr = new MachineInstr(opCode);
minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
ConstPoolVal::getNullConstant(nullValueType)); ConstPoolVal::getNullConstant(nullValueType));
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src); minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest); minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
minstrVec.push_back(minstr);
} }
return minstr1;
} }
@ -1454,7 +1105,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction(); ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
assert(returnInstr->getOpcode() == Instruction::Ret); assert(returnInstr->getOpcode() == Instruction::Ret);
Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, Instruction* returnReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
returnInstr, NULL); returnInstr, NULL);
returnInstr->getMachineInstrVec().addTempValue(returnReg); returnInstr->getMachineInstrVec().addTempValue(returnReg);
@ -1466,7 +1117,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
if (returnInstr->getReturnValue() != NULL) if (returnInstr->getReturnValue() != NULL)
mvec[0]->addImplicitRef(returnInstr->getReturnValue()); mvec[0]->addImplicitRef(returnInstr->getReturnValue());
returnReg->addMachineInstruction(mvec[0]); // returnReg->addMachineInstruction(mvec[0]);
mvec[numInstr++] = new MachineInstr(NOP); // delay slot mvec[numInstr++] = new MachineInstr(NOP); // delay slot
break; break;
@ -2011,7 +1662,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
// Create a temporary value to hold `tmp' // Create a temporary value to hold `tmp'
Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, Instruction* tmpInstr = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
subtreeRoot->leftChild()->getValue(), subtreeRoot->leftChild()->getValue(),
NULL /*could insert tsize here*/); NULL /*could insert tsize here*/);
subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
@ -2025,7 +1676,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
tmpInstr); tmpInstr);
tmpInstr->addMachineInstruction(mvec[0]); // tmpInstr->addMachineInstruction(mvec[0]);
// Instruction 2: sub %sp, tmp -> %sp // Instruction 2: sub %sp, tmp -> %sp
numInstr++; numInstr++;
@ -2057,9 +1708,9 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction()); CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
Value *callee = callInstr->getCalledValue(); Value *callee = callInstr->getCalledValue();
Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, Instruction* jmpAddrReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
callee, NULL); callee, NULL);
Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, Instruction* retAddrReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
callInstr, NULL); callInstr, NULL);
// Note temporary values in the machineInstrVec for the VM instr. // Note temporary values in the machineInstrVec for the VM instr.
@ -2093,8 +1744,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// as computing that value. // as computing that value.
// The retAddrReg is actually computed by the CALL instruction. // The retAddrReg is actually computed by the CALL instruction.
// //
jmpAddrReg->addMachineInstruction(mvec[0]); // jmpAddrReg->addMachineInstruction(mvec[0]);
retAddrReg->addMachineInstruction(mvec[0]); // retAddrReg->addMachineInstruction(mvec[0]);
mvec[numInstr++] = new MachineInstr(NOP); // delay slot mvec[numInstr++] = new MachineInstr(NOP); // delay slot
break; break;
@ -2152,20 +1803,16 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
else else
{ {
MachineInstr *minstr1 = NULL, *minstr2 = NULL; vector<MachineInstr*> minstrVec;
minstr1 = CreateCopyInstructionsByType(target, CreateCopyInstructionsByType(target,
subtreeRoot->getInstruction()->getOperand(forwardOperandNum), subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
subtreeRoot->getInstruction(), minstr2); subtreeRoot->getInstruction(), minstrVec);
assert(minstr1); assert(minstrVec.size() > 0);
mvec[numInstr++] = minstr1; for (unsigned i=0; i < minstrVec.size(); ++i)
if (minstr2 != NULL) mvec[numInstr++] = minstrVec[i];
mvec[numInstr++] = minstr2;
} }
} }
if (! ThisIsAChainRule(ruleForNode))
numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
return numInstr; return numInstr;
} }