mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-03 02:31:26 +00:00
Initial checkin of the PiNodeInsertion pass
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2593 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
531823f125
commit
87fea85934
185
lib/Transforms/Scalar/PiNodeInsertion.cpp
Normal file
185
lib/Transforms/Scalar/PiNodeInsertion.cpp
Normal file
@ -0,0 +1,185 @@
|
||||
//===- PiNodeInsertion.cpp - Insert Pi nodes into a program ---------------===//
|
||||
//
|
||||
// PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks
|
||||
// that are preceeded by a conditional branch, where the branch gives
|
||||
// information about the operands of the condition. For example, this C code:
|
||||
// if (x == 0) { ... = x + 4;
|
||||
// becomes:
|
||||
// if (x == 0) {
|
||||
// x2 = phi(x); // Node that can hold data flow information about X
|
||||
// ... = x2 + 4;
|
||||
//
|
||||
// Since the direction of the condition branch gives information about X itself
|
||||
// (whether or not it is zero), some passes (like value numbering or ABCD) can
|
||||
// use the inserted Phi/Pi nodes as a place to attach information, in this case
|
||||
// saying that X has a value of 0 in this scope. The power of this analysis
|
||||
// information is that "in the scope" translates to "for all uses of x2".
|
||||
//
|
||||
// This special form of Phi node is refered to as a Pi node, following the
|
||||
// terminology defined in the "Array Bounds Checks on Demand" paper.
|
||||
//
|
||||
// As a really trivial example of what the Pi nodes are good for, this pass
|
||||
// replaces values compared for equality with direct constants with the constant
|
||||
// itself in the branch it's equal to the constant. In the case above, it would
|
||||
// change the body to be "... = 0 + 4;" Real value numbering can do much more.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/iTerminators.h"
|
||||
#include "llvm/iOperators.h"
|
||||
#include "llvm/iPHINode.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
|
||||
namespace {
|
||||
struct PiNodeInserter : public FunctionPass {
|
||||
const char *getPassName() const { return "Pi Node Insertion"; }
|
||||
|
||||
virtual bool runOnFunction(Function *F);
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.preservesCFG();
|
||||
AU.addRequired(DominatorSet::ID);
|
||||
}
|
||||
|
||||
// insertPiNodeFor - Insert a Pi node for V in the successors of BB if our
|
||||
// conditions hold. If Rep is not null, fill in a value of 'Rep' instead of
|
||||
// creating a new Pi node itself because we know that the value is a simple
|
||||
// constant.
|
||||
//
|
||||
bool insertPiNodeFor(Value *V, BasicBlock *BB, Value *Rep = 0);
|
||||
};
|
||||
}
|
||||
|
||||
Pass *createPiNodeInsertionPass() { return new PiNodeInserter(); }
|
||||
|
||||
|
||||
bool PiNodeInserter::runOnFunction(Function *F) {
|
||||
bool Changed = false;
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
||||
BasicBlock *BB = *I;
|
||||
TerminatorInst *TI = BB->getTerminator();
|
||||
|
||||
// FIXME: Insert PI nodes for switch statements too
|
||||
|
||||
// Look for conditional branch instructions... that branch on a setcc test
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
|
||||
if (BI->isConditional())
|
||||
// TODO: we could in theory support logical operations here too...
|
||||
if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition())) {
|
||||
// Calculate replacement values if this is an obvious constant == or
|
||||
// != comparison...
|
||||
Value *TrueRep = 0, *FalseRep = 0;
|
||||
|
||||
// Make sure the the constant is the second operand if there is one...
|
||||
// This fits with our cannonicalization patterns used elsewhere in the
|
||||
// compiler, without depending on instcombine running before us.
|
||||
//
|
||||
if (isa<Constant>(SCI->getOperand(0)) &&
|
||||
!isa<Constant>(SCI->getOperand(1))) {
|
||||
SCI->swapOperands();
|
||||
Changed = true;
|
||||
}
|
||||
|
||||
if (isa<Constant>(SCI->getOperand(1))) {
|
||||
if (SCI->getOpcode() == Instruction::SetEQ)
|
||||
TrueRep = SCI->getOperand(1);
|
||||
else if (SCI->getOpcode() == Instruction::SetNE)
|
||||
FalseRep = SCI->getOperand(1);
|
||||
}
|
||||
|
||||
BasicBlock *TB = BI->getSuccessor(0); // True block
|
||||
BasicBlock *FB = BI->getSuccessor(1); // False block
|
||||
|
||||
// Insert the Pi nodes for the first operand to the comparison...
|
||||
Changed |= insertPiNodeFor(SCI->getOperand(0), TB, TrueRep);
|
||||
Changed |= insertPiNodeFor(SCI->getOperand(0), FB, FalseRep);
|
||||
|
||||
// Insert the Pi nodes for the second operand to the comparison...
|
||||
Changed |= insertPiNodeFor(SCI->getOperand(1), TB);
|
||||
Changed |= insertPiNodeFor(SCI->getOperand(1), FB);
|
||||
}
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
// alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for
|
||||
// V.
|
||||
static bool alreadyHasPiNodeFor(Value *V, BasicBlock *BB) {
|
||||
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
|
||||
if (PHINode *PN = dyn_cast<PHINode>(*I))
|
||||
if (PN->getParent() == BB)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// insertPiNodeFor - Insert a Pi node for V in the successors of BB if our
|
||||
// conditions hold. If Rep is not null, fill in a value of 'Rep' instead of
|
||||
// creating a new Pi node itself because we know that the value is a simple
|
||||
// constant.
|
||||
//
|
||||
bool PiNodeInserter::insertPiNodeFor(Value *V, BasicBlock *Succ, Value *Rep) {
|
||||
// Do not insert Pi nodes for constants!
|
||||
if (isa<Constant>(V)) return false;
|
||||
|
||||
// Check to make sure that there is not already a PI node inserted...
|
||||
if (alreadyHasPiNodeFor(V, Succ) && Rep == 0)
|
||||
return false;
|
||||
|
||||
// Insert Pi nodes only into successors that the conditional branch dominates.
|
||||
// In this simple case, we know that BB dominates a successor as long there
|
||||
// are no other incoming edges to the successor.
|
||||
//
|
||||
|
||||
// Check to make sure that the successor only has a single predecessor...
|
||||
pred_iterator PI = pred_begin(Succ);
|
||||
BasicBlock *Pred = *PI;
|
||||
if (++PI != pred_end(Succ)) return false; // Multiple predecessor? Bail...
|
||||
|
||||
// It seems to be safe to insert the Pi node. Do so now...
|
||||
|
||||
// Create the Pi node...
|
||||
Value *Pi = Rep;
|
||||
if (Rep == 0) {
|
||||
PHINode *Phi = new PHINode(V->getType(), V->getName() + ".pi");
|
||||
|
||||
// Insert the Pi node in the successor basic block...
|
||||
Succ->getInstList().push_front(Phi);
|
||||
Pi = Phi;
|
||||
}
|
||||
|
||||
// Loop over all of the uses of V, replacing ones that the Pi node
|
||||
// dominates with references to the Pi node itself.
|
||||
//
|
||||
DominatorSet &DS = getAnalysis<DominatorSet>();
|
||||
for (unsigned i = 0; i < V->use_size(); ) {
|
||||
if (Instruction *U = dyn_cast<Instruction>(*(V->use_begin()+i)))
|
||||
if (U->getParent()->getParent() == Succ->getParent() &&
|
||||
DS.dominates(Succ, U->getParent())) {
|
||||
// This instruction is dominated by the Pi node, replace reference to V
|
||||
// with a reference to the Pi node.
|
||||
//
|
||||
U->replaceUsesOfWith(V, Pi);
|
||||
continue; // Do not skip the next use...
|
||||
}
|
||||
|
||||
// This use is not dominated by the Pi node, skip it...
|
||||
++i;
|
||||
}
|
||||
|
||||
// Set up the incoming value for the Pi node... do this after uses have been
|
||||
// replaced, because we don't want the Pi node to refer to itself.
|
||||
//
|
||||
if (Rep == 0)
|
||||
cast<PHINode>(Pi)->addIncoming(V, Pred);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user