[x86] reassociate integer multiplies using machine combiner pass

Add i16, i32, i64 imul machine instructions to the list of reassociation
candidates.

A new bit of logic is needed to handle integer instructions: they have an
implicit EFLAGS operand, so we have to make sure it's dead in order to do
any reassociation with integer ops.

Differential Revision: http://reviews.llvm.org/D11660



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243756 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2015-07-31 16:21:55 +00:00
parent c136e5507a
commit 8ae0800ae1
2 changed files with 73 additions and 10 deletions

View File

@ -6298,14 +6298,30 @@ hasHighOperandLatency(const TargetSchedModel &SchedModel,
return isHighLatencyDef(DefMI->getOpcode());
}
static bool hasVirtualRegDefsInBasicBlock(const MachineInstr &Inst,
const MachineBasicBlock *MBB) {
assert(Inst.getNumOperands() == 3 && "Reassociation needs binary operators");
static bool hasReassociableOperands(const MachineInstr &Inst,
const MachineBasicBlock *MBB) {
assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
"Reassociation needs binary operators");
const MachineOperand &Op1 = Inst.getOperand(1);
const MachineOperand &Op2 = Inst.getOperand(2);
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
// We need virtual register definitions.
// Integer binary math/logic instructions have a third source operand:
// the EFLAGS register. That operand must be both defined here and never
// used; ie, it must be dead. If the EFLAGS operand is live, then we can
// not change anything because rearranging the operands could affect other
// instructions that depend on the exact status flags (zero, sign, etc.)
// that are set by using these particular operands with this operation.
if (Inst.getNumOperands() == 4) {
assert(Inst.getOperand(3).isReg() &&
Inst.getOperand(3).getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction");
if (!Inst.getOperand(3).isDead())
return false;
}
// We need virtual register definitions for the operands that we will
// reassociate.
MachineInstr *MI1 = nullptr;
MachineInstr *MI2 = nullptr;
if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
@ -6320,7 +6336,7 @@ static bool hasVirtualRegDefsInBasicBlock(const MachineInstr &Inst,
return false;
}
static bool hasReassocSibling(const MachineInstr &Inst, bool &Commuted) {
static bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) {
const MachineBasicBlock *MBB = Inst.getParent();
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
@ -6338,7 +6354,7 @@ static bool hasReassocSibling(const MachineInstr &Inst, bool &Commuted) {
// operands in the same basic block as Inst.
// 3. The previous instruction's result must only be used by Inst.
if (MI1->getOpcode() == AssocOpcode &&
hasVirtualRegDefsInBasicBlock(*MI1, MBB) &&
hasReassociableOperands(*MI1, MBB) &&
MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()))
return true;
@ -6350,6 +6366,10 @@ static bool hasReassocSibling(const MachineInstr &Inst, bool &Commuted) {
// 2. Other math / logic operations (and, or)
static bool isAssociativeAndCommutative(const MachineInstr &Inst) {
switch (Inst.getOpcode()) {
case X86::IMUL16rr:
case X86::IMUL32rr:
case X86::IMUL64rr:
return true;
case X86::ADDSDrr:
case X86::ADDSSrr:
case X86::VADDSDrr:
@ -6369,14 +6389,14 @@ static bool isAssociativeAndCommutative(const MachineInstr &Inst) {
/// If the instruction's operands must be commuted to have a previous
/// instruction of the same type define the first source operand, Commuted will
/// be set to true.
static bool isReassocCandidate(const MachineInstr &Inst, bool &Commuted) {
static bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) {
// 1. The operation must be associative and commutative.
// 2. The instruction must have virtual register definitions for its
// operands in the same basic block.
// 3. The instruction must have a reassociable sibling.
if (isAssociativeAndCommutative(Inst) &&
hasVirtualRegDefsInBasicBlock(Inst, Inst.getParent()) &&
hasReassocSibling(Inst, Commuted))
hasReassociableOperands(Inst, Inst.getParent()) &&
hasReassociableSibling(Inst, Commuted))
return true;
return false;
@ -6399,7 +6419,7 @@ bool X86InstrInfo::getMachineCombinerPatterns(MachineInstr &Root,
// C = B op Y (Root)
bool Commute;
if (isReassocCandidate(Root, Commute)) {
if (isReassociationCandidate(Root, Commute)) {
// We found a sequence of instructions that may be suitable for a
// reassociation of operands to increase ILP. Specify each commutation
// possibility for the Prev instruction in the sequence and let the

View File

@ -0,0 +1,43 @@
; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 < %s | FileCheck %s
; Verify that integer multiplies are reassociated. The first multiply in
; each test should be independent of the result of the preceding add (lea).
define i16 @reassociate_muls_i16(i16 %x0, i16 %x1, i16 %x2, i16 %x3) {
; CHECK-LABEL: reassociate_muls_i16:
; CHECK: # BB#0:
; CHECK-NEXT: leal (%rdi,%rsi), %eax
; CHECK-NEXT: imull %ecx, %edx
; CHECK-NEXT: imull %edx, %eax
; CHECK-NEXT: retq
%t0 = add i16 %x0, %x1
%t1 = mul i16 %x2, %t0
%t2 = mul i16 %x3, %t1
ret i16 %t2
}
define i32 @reassociate_muls_i32(i32 %x0, i32 %x1, i32 %x2, i32 %x3) {
; CHECK-LABEL: reassociate_muls_i32:
; CHECK: # BB#0:
; CHECK-NEXT: leal (%rdi,%rsi), %eax
; CHECK-NEXT: imull %ecx, %edx
; CHECK-NEXT: imull %edx, %eax
; CHECK-NEXT: retq
%t0 = add i32 %x0, %x1
%t1 = mul i32 %x2, %t0
%t2 = mul i32 %x3, %t1
ret i32 %t2
}
define i64 @reassociate_muls_i64(i64 %x0, i64 %x1, i64 %x2, i64 %x3) {
; CHECK-LABEL: reassociate_muls_i64:
; CHECK: # BB#0:
; CHECK-NEXT: leaq (%rdi,%rsi), %rax
; CHECK-NEXT: imulq %rcx, %rdx
; CHECK-NEXT: imulq %rdx, %rax
; CHECK-NEXT: retq
%t0 = add i64 %x0, %x1
%t1 = mul i64 %x2, %t0
%t2 = mul i64 %x3, %t1
ret i64 %t2
}