Add the SpillPlacement analysis pass.

This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.

Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.

The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.

This is a work in progress and still not hooked up to RegAllocGreedy.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122938 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2011-01-06 01:21:53 +00:00
parent 05e353c4ed
commit 8bfe50871f
5 changed files with 466 additions and 0 deletions

View File

@ -88,6 +88,11 @@ namespace llvm {
/// register allocators.
extern char &TwoAddressInstructionPassID;
/// SpillPlacement analysis. Suggest optimal placement of spill code between
/// basic blocks.
///
extern char &SpillPlacementID;
/// UnreachableMachineBlockElimination pass - This pass removes unreachable
/// machine basic blocks.
extern char &UnreachableMachineBlockElimID;

View File

@ -203,6 +203,7 @@ void initializeSimplifyLibCallsPass(PassRegistry&);
void initializeSingleLoopExtractorPass(PassRegistry&);
void initializeSinkingPass(PassRegistry&);
void initializeSlotIndexesPass(PassRegistry&);
void initializeSpillPlacementPass(PassRegistry&);
void initializeStackProtectorPass(PassRegistry&);
void initializeStackSlotColoringPass(PassRegistry&);
void initializeStripDeadDebugInfoPass(PassRegistry&);

View File

@ -80,6 +80,7 @@ add_llvm_library(LLVMCodeGen
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.cpp
SpillPlacement.cpp
SplitKit.cpp
Splitter.cpp
StackProtector.cpp

View File

@ -0,0 +1,354 @@
//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the spill code placement analysis.
//
// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
// basic blocks are weighted by the block frequency and added to become the node
// bias.
//
// Transparent basic blocks have the variable live through, but don't care if it
// is spilled or in a register. These blocks become connections in the Hopfield
// network, again weighted by block frequency.
//
// The Hopfield network minimizes (possibly locally) its energy function:
//
// E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
//
// The energy function represents the expected spill code execution frequency,
// or the cost of spilling. This is a Lyapunov function which never increases
// when a node is updated. It is guaranteed to converge to a local minimum.
//
//===----------------------------------------------------------------------===//
#include "SpillPlacement.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
using namespace llvm;
char SpillPlacement::ID = 0;
INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
"Spill Code Placement Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
"Spill Code Placement Analysis", true, true)
char &llvm::SpillPlacementID = SpillPlacement::ID;
void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<EdgeBundles>();
AU.addRequiredTransitive<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Node - Each edge bundle corresponds to a Hopfield node.
///
/// The node contains precomputed frequency data that only depends on the CFG,
/// but Bias and Links are computed each time placeSpills is called.
///
/// The node Value is positive when the variable should be in a register. The
/// value can change when linked nodes change, but convergence is very fast
/// because all weights are positive.
///
struct SpillPlacement::Node {
/// Frequency - Total block frequency feeding into[0] or out of[1] the bundle.
/// Ideally, these two numbers should be identical, but inaccuracies in the
/// block frequency estimates means that we need to normalize ingoing and
/// outgoing frequencies separately so they are commensurate.
float Frequency[2];
/// Bias - Normalized contributions from non-transparent blocks.
/// A bundle connected to a MustSpill block has a huge negative bias,
/// otherwise it is a number in the range [-2;2].
float Bias;
/// Value - Output value of this node computed from the Bias and links.
/// This is always in the range [-1;1]. A positive number means the variable
/// should go in a register through this bundle.
float Value;
typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
/// Links - (Weight, BundleNo) for all transparent blocks connecting to other
/// bundles. The weights are all positive and add up to at most 2, weights
/// from ingoing and outgoing nodes separately add up to a most 1. The weight
/// sum can be less than 2 when the variable is not live into / out of some
/// connected basic blocks.
LinkVector Links;
/// preferReg - Return true when this node prefers to be in a register.
bool preferReg() const {
// Undecided nodes (Value==0) go on the stack.
return Value > 0;
}
/// mustSpill - Return True if this node is so biased that it must spill.
bool mustSpill() const {
// Actually, we must spill if Bias < sum(weights).
// It may be worth it to compute the weight sum here?
return Bias < -2.0f;
}
/// Node - Create a blank Node.
Node() {
Frequency[0] = Frequency[1] = 0;
}
/// clear - Reset per-query data, but preserve frequencies that only depend on
// the CFG.
void clear() {
Bias = Value = 0;
Links.clear();
}
/// addLink - Add a link to bundle b with weight w.
/// out=0 for an ingoing link, and 1 for an outgoing link.
void addLink(unsigned b, float w, bool out) {
// Normalize w relative to all connected blocks from that direction.
w /= Frequency[out];
// There can be multiple links to the same bundle, add them up.
for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
if (I->second == b) {
I->first += w;
return;
}
// This must be the first link to b.
Links.push_back(std::make_pair(w, b));
}
/// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
void addBias(float w, bool out) {
// Normalize w relative to all connected blocks from that direction.
w /= Frequency[out];
Bias += w;
}
/// update - Recompute Value from Bias and Links. Return true when node
/// preference changes.
bool update(const Node nodes[]) {
// Compute the weighted sum of inputs.
float Sum = Bias;
for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
Sum += I->first * nodes[I->second].Value;
// The weighted sum is going to be in the range [-2;2]. Ideally, we should
// simply set Value = sign(Sum), but we will add a dead zone around 0 for
// two reasons:
// 1. It avoids arbitrary bias when all links are 0 as is possible during
// initial iterations.
// 2. It helps tame rounding errors when the links nominally sum to 0.
const float Thres = 1e-4;
bool Before = preferReg();
if (Sum < -Thres)
Value = -1;
else if (Sum > Thres)
Value = 1;
else
Value = 0;
return Before != preferReg();
}
};
bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
bundles = &getAnalysis<EdgeBundles>();
loops = &getAnalysis<MachineLoopInfo>();
assert(!nodes && "Leaking node array");
nodes = new Node[bundles->getNumBundles()];
// Compute total ingoing and outgoing block frequencies for all bundles.
for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
float Freq = getBlockFrequency(I);
unsigned Num = I->getNumber();
nodes[bundles->getBundle(Num, 1)].Frequency[0] += Freq;
nodes[bundles->getBundle(Num, 0)].Frequency[1] += Freq;
}
// We never change the function.
return false;
}
void SpillPlacement::releaseMemory() {
delete[] nodes;
nodes = 0;
}
/// activate - mark node n as active if it wasn't already.
void SpillPlacement::activate(unsigned n) {
if (ActiveNodes->test(n))
return;
ActiveNodes->set(n);
nodes[n].clear();
}
/// prepareNodes - Compute node biases and weights from a set of constraints.
/// Set a bit in NodeMask for each active node.
void SpillPlacement::
prepareNodes(const SmallVectorImpl<BlockConstraint> &LiveBlocks) {
DEBUG(dbgs() << "Building Hopfield network from " << LiveBlocks.size()
<< " constraint blocks:\n");
for (SmallVectorImpl<BlockConstraint>::const_iterator I = LiveBlocks.begin(),
E = LiveBlocks.end(); I != E; ++I) {
MachineBasicBlock *MBB = MF->getBlockNumbered(I->Number);
float Freq = getBlockFrequency(MBB);
DEBUG(dbgs() << " BB#" << I->Number << format(", Freq = %.1f", Freq));
// Is this a transparent block? Link ingoing and outgoing bundles.
if (I->Entry == DontCare && I->Exit == DontCare) {
unsigned ib = bundles->getBundle(I->Number, 0);
unsigned ob = bundles->getBundle(I->Number, 1);
DEBUG(dbgs() << ", transparent EB#" << ib << " -> EB#" << ob << '\n');
// Ignore self-loops.
if (ib == ob)
continue;
activate(ib);
activate(ob);
nodes[ib].addLink(ob, Freq, 1);
nodes[ob].addLink(ib, Freq, 0);
continue;
}
// This block is not transparent, but it can still add bias.
const float Bias[] = {
0, // DontCare,
1, // PrefReg,
-1, // PrefSpill
-HUGE_VALF // MustSpill
};
// Live-in to block?
if (I->Entry != DontCare) {
unsigned ib = bundles->getBundle(I->Number, 0);
activate(ib);
nodes[ib].addBias(Freq * Bias[I->Entry], 1);
DEBUG(dbgs() << format(", entry EB#%u %+.1f", ib, Freq * Bias[I->Entry]));
}
// Live-out from block?
if (I->Exit != DontCare) {
unsigned ob = bundles->getBundle(I->Number, 1);
activate(ob);
nodes[ob].addBias(Freq * Bias[I->Exit], 0);
DEBUG(dbgs() << format(", exit EB#%u %+.1f", ob, Freq * Bias[I->Exit]));
}
DEBUG(dbgs() << '\n');
}
}
/// iterate - Repeatedly update the Hopfield nodes until stability or the
/// maximum number of iterations is reached.
/// @param Linked - Numbers of linked nodes that need updating.
void SpillPlacement::iterate(const SmallVectorImpl<unsigned> &Linked) {
DEBUG(dbgs() << "Iterating over " << Linked.size() << " linked nodes:\n");
if (Linked.empty())
return;
// Run up to 10 iterations. The edge bundle numbering is closely related to
// basic block numbering, so there is a strong tendency towards chains of
// linked nodes with sequential numbers. By scanning the linked nodes
// backwards and forwards, we make it very likely that a single node can
// affect the entire network in a single iteration. That means very fast
// convergence, usually in a single iteration.
for (unsigned iteration = 0; iteration != 10; ++iteration) {
// Scan backwards, skipping the last node which was just updated.
bool Changed = false;
for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
unsigned n = *I;
bool C = nodes[n].update(nodes);
Changed |= C;
DEBUG(dbgs() << " \\EB#" << n << format(" = %+2.0f", nodes[n].Value)
<< (C ? " *\n" : "\n"));
}
if (!Changed)
return;
// Scan forwards, skipping the first node which was just updated.
Changed = false;
for (SmallVectorImpl<unsigned>::const_iterator I =
llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
unsigned n = *I;
bool C = nodes[n].update(nodes);
Changed |= C;
DEBUG(dbgs() << " /EB#" << n << format(" = %+2.0f", nodes[n].Value)
<< (C ? " *\n" : "\n"));
}
if (!Changed)
return;
}
}
bool
SpillPlacement::placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks,
BitVector &RegBundles) {
// Reuse RegBundles as our ActiveNodes vector.
ActiveNodes = &RegBundles;
ActiveNodes->clear();
ActiveNodes->resize(bundles->getNumBundles());
// Compute active nodes, links and biases.
prepareNodes(LiveBlocks);
// Update all active nodes, and find the ones that are actually linked to
// something so their value may change when iterating.
DEBUG(dbgs() << "Network has " << RegBundles.count() << " active nodes:\n");
SmallVector<unsigned, 8> Linked;
for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) {
nodes[n].update(nodes);
// A node that must spill, or a node without any links is not going to
// change its value ever again, so exclude it from iterations.
if (!nodes[n].Links.empty() && !nodes[n].mustSpill())
Linked.push_back(n);
DEBUG({
dbgs() << " EB#" << n << format(" = %+2.0f", nodes[n].Value)
<< format(", Bias %+.2f", nodes[n].Bias)
<< format(", Freq %.1f/%.1f", nodes[n].Frequency[0],
nodes[n].Frequency[1]);
for (unsigned i = 0, e = nodes[n].Links.size(); i != e; ++i)
dbgs() << format(", %.2f -> EB#%u", nodes[n].Links[i].first,
nodes[n].Links[i].second);
dbgs() << '\n';
});
}
// Iterate the network to convergence.
iterate(Linked);
// Write preferences back to RegBundles.
bool Perfect = true;
for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n))
if (!nodes[n].preferReg()) {
RegBundles.reset(n);
Perfect = false;
}
return Perfect;
}
/// getBlockFrequency - Return our best estimate of the block frequency which is
/// the expected number of block executions per function invocation.
float SpillPlacement::getBlockFrequency(const MachineBasicBlock *MBB) {
// Use the unnormalized spill weight for real block frequencies.
return LiveIntervals::getSpillWeight(true, false, loops->getLoopDepth(MBB));
}

View File

@ -0,0 +1,105 @@
//===-- SpillPlacement.h - Optimal Spill Code Placement --------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This analysis computes the optimal spill code placement between basic blocks.
//
// The runOnMachineFunction() method only precomputes some profiling information
// about the CFG. The real work is done by placeSpills() which is called by the
// register allocator.
//
// Given a variable that is live across multiple basic blocks, and given
// constraints on the basic blocks where the variable is live, determine which
// edge bundles should have the variable in a register and which edge bundles
// should have the variable in a stack slot.
//
// The returned bit vector can be used to place optimal spill code at basic
// block entries and exits. Spill code placement inside a basic block is not
// considered.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SPILLPLACEMENT_H
#define LLVM_CODEGEN_SPILLPLACEMENT_H
#include "llvm/CodeGen/MachineFunctionPass.h"
namespace llvm {
class BitVector;
class EdgeBundles;
class MachineBasicBlock;
class MachineLoopInfo;
template <typename> class SmallVectorImpl;
class SpillPlacement : public MachineFunctionPass {
struct Node;
const MachineFunction *MF;
const EdgeBundles *bundles;
const MachineLoopInfo *loops;
Node *nodes;
// Nodes that are active in the current computation. Owned by the placeSpills
// caller.
BitVector *ActiveNodes;
public:
static char ID; // Pass identification, replacement for typeid.
SpillPlacement() : MachineFunctionPass(ID), nodes(0) {}
~SpillPlacement() { releaseMemory(); }
/// BorderConstraint - A basic block has separate constraints for entry and
/// exit.
enum BorderConstraint {
DontCare, ///< Block doesn't care / variable not live.
PrefReg, ///< Block entry/exit prefers a register.
PrefSpill, ///< Block entry/exit prefers a stack slot.
MustSpill ///< A register is impossible, variable must be spilled.
};
/// BlockConstraint - Entry and exit constraints for a basic block.
struct BlockConstraint {
unsigned Number; ///< Basic block number (from MBB::getNumber()).
BorderConstraint Entry : 8; ///< Constraint on block entry.
BorderConstraint Exit : 8; ///< Constraint on block exit.
};
/// placeSpills - Compute the optimal spill code placement given the
/// constraints. No MustSpill constraints will be violated, and the smallest
/// possible number of PrefX constraints will be violated, weighted by
/// expected execution frequencies.
/// @param LiveBlocks Constraints for blocks that have the variable live in or
/// live out. DontCare/DontCare means the variable is live
/// through the block. DontCare/X means the variable is live
/// out, but not live in.
/// @param RegBundles Bit vector to receive the edge bundles where the
/// variable should be kept in a register. Each bit
/// corresponds to an edge bundle, a set bit means the
/// variable should be kept in a register through the
/// bundle. A clear bit means the variable should be
/// spilled.
/// @return True if a perfect solution was found, allowing the variable to be
/// in a register through all relevant bundles.
bool placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks,
BitVector &RegBundles);
private:
virtual bool runOnMachineFunction(MachineFunction&);
virtual void getAnalysisUsage(AnalysisUsage&) const;
virtual void releaseMemory();
void activate(unsigned);
float getBlockFrequency(const MachineBasicBlock*);
void prepareNodes(const SmallVectorImpl<BlockConstraint>&);
void iterate(const SmallVectorImpl<unsigned>&);
};
} // end namespace llvm
#endif