mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
Add a basic intra-procedural escape analysis. This hasn't be extensively tested yet, but feedback is welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57342 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
1c341c8462
commit
8f28c78e95
59
include/llvm/Analysis/EscapeAnalysis.h
Normal file
59
include/llvm/Analysis/EscapeAnalysis.h
Normal file
@ -0,0 +1,59 @@
|
||||
//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the interface for the pointer escape analysis.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_LOOPVR_H
|
||||
#define LLVM_ANALYSIS_LOOPVR_H
|
||||
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
/// EscapeAnalysis - This class determines whether an allocation (a MallocInst
|
||||
/// or an AllocaInst) can escape from the current function. It performs some
|
||||
/// precomputation, with the rest of the work happening on-demand.
|
||||
class EscapeAnalysis : public FunctionPass {
|
||||
private:
|
||||
std::set<Instruction*> EscapePoints;
|
||||
|
||||
public:
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
|
||||
EscapeAnalysis() : FunctionPass(intptr_t(&ID)) {}
|
||||
|
||||
bool runOnFunction(Function &F);
|
||||
|
||||
void releaseMemory() {
|
||||
EscapePoints.clear();
|
||||
}
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequiredTransitive<TargetData>();
|
||||
AU.addRequiredTransitive<AliasAnalysis>();
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
|
||||
//===---------------------------------------------------------------------
|
||||
// Client API
|
||||
|
||||
/// escapes - returns true if the AllocationInst can escape.
|
||||
bool escapes(AllocationInst* A);
|
||||
};
|
||||
|
||||
} // end llvm namespace
|
||||
|
||||
#endif
|
131
lib/Analysis/EscapeAnalysis.cpp
Normal file
131
lib/Analysis/EscapeAnalysis.cpp
Normal file
@ -0,0 +1,131 @@
|
||||
//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file provides the implementation of the pointer escape analysis.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "escape-analysis"
|
||||
#include "llvm/Analysis/EscapeAnalysis.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Support/InstIterator.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
using namespace llvm;
|
||||
|
||||
char EscapeAnalysis::ID = 0;
|
||||
static RegisterPass<EscapeAnalysis> X("escape-analysis",
|
||||
"Pointer Escape Analysis", true, true);
|
||||
|
||||
|
||||
/// runOnFunction - Precomputation for escape analysis. This collects all know
|
||||
/// "escape points" in the def-use graph of the function. These are
|
||||
/// instructions which allow their inputs to escape from the current function.
|
||||
bool EscapeAnalysis::runOnFunction(Function& F) {
|
||||
EscapePoints.clear();
|
||||
|
||||
TargetData& TD = getAnalysis<TargetData>();
|
||||
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
|
||||
Module* M = F.getParent();
|
||||
|
||||
// Walk through all instructions in the function, identifying those that
|
||||
// may allow their inputs to escape.
|
||||
for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
|
||||
Instruction* I = &*II;
|
||||
|
||||
// The most obvious case is stores. Any store that may write to global
|
||||
// memory or to a function argument potentially allows its input to escape.
|
||||
if (StoreInst* S = dyn_cast<StoreInst>(I)) {
|
||||
const Type* StoreType = S->getOperand(0)->getType();
|
||||
unsigned StoreSize = TD.getTypeStoreSize(StoreType);
|
||||
Value* Pointer = S->getPointerOperand();
|
||||
|
||||
bool inserted = false;
|
||||
for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
|
||||
AI != AE; ++AI) {
|
||||
AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0UL);
|
||||
if (R != AliasAnalysis::NoAlias) {
|
||||
EscapePoints.insert(S);
|
||||
inserted = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (inserted)
|
||||
continue;
|
||||
|
||||
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
|
||||
GI != GE; ++GI) {
|
||||
AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0UL);
|
||||
if (R != AliasAnalysis::NoAlias) {
|
||||
EscapePoints.insert(S);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Calls and invokes potentially allow their parameters to escape.
|
||||
// FIXME: This can and should be refined. Intrinsics have known escape
|
||||
// behavior, and alias analysis may be able to tell us more about callees.
|
||||
} else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
||||
EscapePoints.insert(I);
|
||||
|
||||
// Returns allow the return value to escape. This is mostly important
|
||||
// for malloc to alloca promotion.
|
||||
} else if (isa<ReturnInst>(I)) {
|
||||
EscapePoints.insert(I);
|
||||
}
|
||||
|
||||
// FIXME: Are there any other possible escape points?
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// escapes - Determines whether the passed allocation can escape from the
|
||||
/// current function. It does this by using a simple worklist algorithm to
|
||||
/// search for a path in the def-use graph from the allocation to an
|
||||
/// escape point.
|
||||
/// FIXME: Once we've discovered a path, it would be a good idea to memoize it,
|
||||
/// and all of its subpaths, to amortize the cost of future queries.
|
||||
bool EscapeAnalysis::escapes(AllocationInst* A) {
|
||||
std::vector<Value*> worklist;
|
||||
worklist.push_back(A);
|
||||
|
||||
SmallPtrSet<Value*, 8> visited;
|
||||
while (!worklist.empty()) {
|
||||
Value* curr = worklist.back();
|
||||
worklist.pop_back();
|
||||
|
||||
visited.insert(curr);
|
||||
|
||||
if (Instruction* CurrInst = dyn_cast<Instruction>(curr))
|
||||
if (EscapePoints.count(CurrInst))
|
||||
return true;
|
||||
|
||||
for (Instruction::use_iterator UI = curr->use_begin(), UE = curr->use_end();
|
||||
UI != UE; ++UI)
|
||||
if (Instruction* U = dyn_cast<Instruction>(UI))
|
||||
if (!visited.count(U))
|
||||
if (StoreInst* S = dyn_cast<StoreInst>(U)) {
|
||||
// We know this must be an instruction, because constant gep's would
|
||||
// have been found to alias a global, so stores to them would have
|
||||
// been in EscapePoints.
|
||||
worklist.push_back(cast<Instruction>(S->getPointerOperand()));
|
||||
} else if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
|
||||
// Because branches on the pointer value can hide data dependencies,
|
||||
// we need to track values that were generated by branching on the
|
||||
// pointer (or some derived value). To do that, we push the block,
|
||||
// whose uses will be the PHINodes that generate information based
|
||||
// one it.
|
||||
worklist.push_back(U->getParent());
|
||||
} else
|
||||
worklist.push_back(U);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
Loading…
Reference in New Issue
Block a user