Several important bug fixes:

(1) Cannot use ANDN(ot), ORN, and XORN for boolean ops, only bitwise ops.

(2) Conditional move instructions must distinguish signed and unsigned
    condition codes, e.g., MOVLE vs. MOVLEU.

(3) Conditional-move-on-register was using the cond-move-on-cc opcodes,
    which produces a valid-looking instruction with bogus registers!

(4) Here's a really cute one: dividing-by-2^k for negative numbers needs to
    add 2^k-1 before shifting, not add 1 after shifting.  Sadly, these
    are the same when k=0 so our poor test case worked fine.

(5) Casting between signed and unsigned values was not correct:
    completely reimplemented.

(6) Zero-extension on unsigned values was bogus: I was only doing the
    SRL and not the SLLX before it.  Don't know WHAT I was thinking!

(7) And the most important class of changes: Sign-extensions on signed values.
    Signed values are not sign-extended after ordinary operations,
    so they must be sign-extended before the following cases:
	-- passing to an external or unknown function
	-- returning from a function
	-- using as operand 2 of DIV or REM
	-- using as either operand of condition-code setting operation
           (currently only SUBCC), with smaller than 32-bit operands


Also, a couple of improvements:

(1) Fold cast-to-bool into Not(bool).  Need to do this for And, Or, XOR also.

(2) Convert SetCC-Const into a conditional-move-on-register (case 41)
    if the constant is 0.  This was only being done for branch-on-SetCC-Const
    when the branch is folded with the SetCC-Const.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7159 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve
2003-07-10 20:07:54 +00:00
parent 940a3a47b0
commit 951df2b1bd

View File

@@ -25,6 +25,7 @@
#include "llvm/Intrinsics.h" #include "llvm/Intrinsics.h"
#include "Support/MathExtras.h" #include "Support/MathExtras.h"
#include <math.h> #include <math.h>
#include <algorithm>
static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
std::vector<MachineInstr*>& mvec) { std::vector<MachineInstr*>& mvec) {
@@ -429,13 +430,8 @@ ChooseMovFpcciInstruction(const InstructionNode* instrNode)
} }
// Assumes that SUBcc v1, v2 -> v3 has been executed. // ChooseMovpcciForSetCC -- Choose a conditional-move instruction
// In most cases, we want to clear v3 and then follow it by instruction // based on the type of SetCC operation.
// MOVcc 1 -> v3.
// Set mustClearReg=false if v3 need not be cleared before conditional move.
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
// (i.e., we want to test inverse of a condition)
// (The latter two cases do not seem to arise because SetNE needs nothing.)
// //
// WARNING: since this function has only one caller, it always returns // WARNING: since this function has only one caller, it always returns
// the opcode that expects an immediate and a register. If this function // the opcode that expects an immediate and a register. If this function
@@ -444,25 +440,58 @@ ChooseMovFpcciInstruction(const InstructionNode* instrNode)
// //
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the // It will be necessary to expand convertOpcodeFromRegToImm() to handle the
// new cases of opcodes. // new cases of opcodes.
//
static MachineOpCode static MachineOpCode
ChooseMovpcciAfterSub(const InstructionNode* instrNode) ChooseMovpcciForSetCC(const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
const Type* opType = instrNode->leftChild()->getValue()->getType();
assert(opType->isIntegral() || isa<PointerType>(opType));
bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
switch(instrNode->getInstruction()->getOpcode())
{
case Instruction::SetEQ: opCode = V9::MOVEi; break;
case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break;
case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break;
case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break;
case Instruction::SetNE: opCode = V9::MOVNEi; break;
default: assert(0 && "Unrecognized LLVM instr!"); break;
}
return opCode;
}
// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
// instruction based on the type of SetCC operation. These instructions
// compare a register with 0 and perform the move is the comparison is true.
//
// WARNING: like the previous function, this function it always returns
// the opcode that expects an immediate and a register. See above.
//
static MachineOpCode
ChooseMovpregiForSetCC(const InstructionNode* instrNode)
{ {
MachineOpCode opCode = V9::INVALID_OPCODE; MachineOpCode opCode = V9::INVALID_OPCODE;
switch(instrNode->getInstruction()->getOpcode()) switch(instrNode->getInstruction()->getOpcode())
{ {
case Instruction::SetEQ: opCode = V9::MOVEi; break; case Instruction::SetEQ: opCode = V9::MOVRZi; break;
case Instruction::SetLE: opCode = V9::MOVLEi; break; case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
case Instruction::SetGE: opCode = V9::MOVGEi; break; case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
case Instruction::SetLT: opCode = V9::MOVLi; break; case Instruction::SetLT: opCode = V9::MOVRLZi; break;
case Instruction::SetGT: opCode = V9::MOVGi; break; case Instruction::SetGT: opCode = V9::MOVRGZi; break;
case Instruction::SetNE: opCode = V9::MOVNEi; break; case Instruction::SetNE: opCode = V9::MOVRNZi; break;
default: assert(0 && "Unrecognized VM instr!"); break; default: assert(0 && "Unrecognized VM instr!"); break;
} }
return opCode; return opCode;
} }
static inline MachineOpCode static inline MachineOpCode
ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType) ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType)
{ {
@@ -963,27 +992,46 @@ CreateDivConstInstruction(TargetMachine &target,
Value* shiftOperand; Value* shiftOperand;
if (resultType->isSigned()) { if (resultType->isSigned()) {
// The result may be negative and we need to add one before shifting // For N / 2^k, if the operand N is negative,
// a negative value. Use: // we need to add (2^k - 1) before right-shifting by k, i.e.,
// srl i0, 31, x0; add x0, i0, i1 (if i0 is <= 32 bits)
// or
// srlx i0, 63, x0; add x0, i0, i1 (if i0 is 64 bits)
// to compute i1=i0+1 if i0 < 0 and i1=i0 otherwise.
// //
TmpInstruction *srlTmp, *addTmp; // (N / 2^k) = N >> k, if N >= 0;
// (N + 2^k - 1) >> k, if N < 0
//
// If N is <= 32 bits, use:
// sra N, 31, t1 // t1 = ~0, if N < 0, 0 else
// srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
// add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
// sra t3, k, result // result = N / 2^k
//
// If N is 64 bits, use:
// srax N, k-1, t1 // t1 = sign bit in high k positions
// srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
// add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
// sra t3, k, result // result = N / 2^k
//
TmpInstruction *sraTmp, *srlTmp, *addTmp;
MachineCodeForInstruction& mcfi MachineCodeForInstruction& mcfi
= MachineCodeForInstruction::get(destVal); = MachineCodeForInstruction::get(destVal);
srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign"); sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg"); addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
// Create the SRA or SRAX instruction to get the sign bit
mvec.push_back(BuildMI((resultType==Type::LongTy) ?
V9::SRAXi6 : V9::SRAi5, 3)
.addReg(LHS)
.addSImm((resultType==Type::LongTy)? pow-1 : 31)
.addRegDef(sraTmp));
// Create the SRL or SRLX instruction to get the sign bit // Create the SRL or SRLX instruction to get the sign bit
mvec.push_back(BuildMI((resultType==Type::LongTy) ? mvec.push_back(BuildMI((resultType==Type::LongTy) ?
V9::SRLXi6 : V9::SRLi5, 3) V9::SRLXi6 : V9::SRLi5, 3)
.addReg(LHS) .addReg(sraTmp)
.addSImm((resultType==Type::LongTy)? 63 : 31) .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
.addRegDef(srlTmp)); .addRegDef(srlTmp));
// Create the ADD instruction to add 1 for negative values // Create the ADD instruction to add 2^pow-1 for negative values
mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp) mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
.addRegDef(addTmp)); .addRegDef(addTmp));
@@ -1441,6 +1489,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
unsigned allocaSize = 0; unsigned allocaSize = 0;
MachineInstr* M, *M2; MachineInstr* M, *M2;
unsigned L; unsigned L;
bool foldCase = false;
mvec.clear(); mvec.clear();
@@ -1489,7 +1538,9 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8) BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
.addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def); .addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def);
// Insert a copy to copy the return value to the appropriate register // If ther is a value to return, we need to:
// (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
// (b) Insert a copy to copy the return value to the appropriate reg.
// -- For FP values, create a FMOVS or FMOVD instruction // -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction // -- For non-FP values, create an add-with-0 instruction
// //
@@ -1503,19 +1554,39 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
: (unsigned) SparcIntRegClass::i0); : (unsigned) SparcIntRegClass::i0);
retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum); retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
// Create a virtual register to represent it and mark // () Insert sign-extension instructions for small signed values.
// this vreg as being an implicit operand of the ret MI //
Value* retValToUse = retVal;
if (retType->isIntegral() && retType->isSigned()) {
unsigned retSize = target.getTargetData().getTypeSize(retType);
if (retSize <= 4) {
// create a temporary virtual reg. to hold the sign-extension
retValToUse = new TmpInstruction(mcfi, retVal);
// sign-extend retVal and put the result in the temporary reg.
target.getInstrInfo().CreateSignExtensionInstructions
(target, returnInstr->getParent()->getParent(),
retVal, retValToUse, 8*retSize, mvec, mcfi);
}
}
// (b) Now, insert a copy to to the appropriate register:
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
//
// First, create a virtual register to represent the register and
// mark this vreg as being an implicit operand of the ret MI.
TmpInstruction* retVReg = TmpInstruction* retVReg =
new TmpInstruction(mcfi, retVal, NULL, "argReg"); new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
retMI->addImplicitRef(retVReg); retMI->addImplicitRef(retVReg);
if (retType->isFloatingPoint()) if (retType->isFloatingPoint())
M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
.addReg(retVal).addReg(retVReg, MOTy::Def)); .addReg(retValToUse).addReg(retVReg, MOTy::Def));
else else
M = (BuildMI(ChooseAddInstructionByType(retType), 3) M = (BuildMI(ChooseAddInstructionByType(retType), 3)
.addReg(retVal).addSImm((int64_t) 0) .addReg(retValToUse).addSImm((int64_t) 0)
.addReg(retVReg, MOTy::Def)); .addReg(retVReg, MOTy::Def));
// Mark the operand with the register it should be assigned // Mark the operand with the register it should be assigned
@@ -1667,8 +1738,26 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
assert(0 && "VRegList should never be the topmost non-chain rule"); assert(0 && "VRegList should never be the topmost non-chain rule");
break; break;
case 21: // bool: Not(bool,reg): Both these are implemented as: case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg
case 421: // reg: BNot(reg,reg): reg = reg XOR-NOT 0 { // First find the unary operand. It may be left or right, usually right.
Instruction* notI = subtreeRoot->getInstruction();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(subtreeRoot->getInstruction()));
unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
// Unconditionally set register to 0
mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
.addReg(notI, MOTy::UseAndDef));
break;
}
case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0
{ // First find the unary operand. It may be left or right, usually right. { // First find the unary operand. It may be left or right, usually right.
Value* notArg = BinaryOperator::getNotArgument( Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(subtreeRoot->getInstruction())); cast<BinaryOperator>(subtreeRoot->getInstruction()));
@@ -1678,11 +1767,28 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
break; break;
} }
case 322: // reg: Not(tobool, reg):
// Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
foldCase = true;
// Just fall through!
case 22: // reg: ToBoolTy(reg): case 22: // reg: ToBoolTy(reg):
{ {
const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); Instruction* castI = subtreeRoot->getInstruction();
assert(opType->isIntegral() || isa<PointerType>(opType)); Value* opVal = subtreeRoot->leftChild()->getValue();
forwardOperandNum = 0; // forward first operand to user assert(opVal->getType()->isIntegral() ||
isa<PointerType>(opVal->getType()));
// Unconditionally set register to 0
mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
.addReg(castI, MOTy::UseAndDef));
break; break;
} }
@@ -1692,6 +1798,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
case 26: // reg: ToShortTy(reg) case 26: // reg: ToShortTy(reg)
case 27: // reg: ToUIntTy(reg) case 27: // reg: ToUIntTy(reg)
case 28: // reg: ToIntTy(reg) case 28: // reg: ToIntTy(reg)
case 29: // reg: ToULongTy(reg)
case 30: // reg: ToLongTy(reg)
{ {
//====================================================================== //======================================================================
// Rules for integer conversions: // Rules for integer conversions:
@@ -1713,64 +1821,87 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// //
// Since we assume 2s complement representations, this implies: // Since we assume 2s complement representations, this implies:
// //
// -- if operand is smaller than destination, zero-extend or sign-extend // -- If operand is smaller than destination, zero-extend or sign-extend
// according to the signedness of the *operand*: source decides. // according to the signedness of the *operand*: source decides:
// ==> we have to do nothing here! // (1) If operand is signed, sign-extend it.
// If dest is unsigned, zero-ext the result!
// (2) If operand is unsigned, our current invariant is that
// it's high bits are correct, so zero-extension is not needed.
// //
// -- if operand is same size as or larger than destination, and the // -- If operand is same size as or larger than destination,
// destination is *unsigned*, zero-extend the operand: dest. decides // zero-extend or sign-extend according to the signedness of
// // the *destination*: destination decides:
// -- if operand is same size as or larger than destination, and the // (1) If destination is signed, sign-extend (truncating if needed)
// destination is *signed*, the choice is implementation defined: // This choice is implementation defined. We sign-extend the
// we sign-extend the operand: i.e., again dest. decides. // operand, which matches both Sun's cc and gcc3.2.
// Note: this matches both Sun's cc and gcc3.2. // (2) If destination is unsigned, zero-extend (truncating if needed)
//====================================================================== //======================================================================
Instruction* destI = subtreeRoot->getInstruction(); Instruction* destI = subtreeRoot->getInstruction();
Function* currentFunc = destI->getParent()->getParent();
MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
Value* opVal = subtreeRoot->leftChild()->getValue(); Value* opVal = subtreeRoot->leftChild()->getValue();
const Type* opType = opVal->getType(); const Type* opType = opVal->getType();
if (opType->isIntegral() || isa<PointerType>(opType)) { const Type* destType = destI->getType();
unsigned opSize = target.getTargetData().getTypeSize(opType); unsigned opSize = target.getTargetData().getTypeSize(opType);
unsigned destSize = unsigned destSize = target.getTargetData().getTypeSize(destType);
target.getTargetData().getTypeSize(destI->getType());
if (opSize >= destSize) { bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
// Operand is same size as or larger than dest:
// zero- or sign-extend, according to the signeddness of if (opType == Type::BoolTy ||
// the destination (see above). opType == destType ||
if (destI->getType()->isSigned()) isIntegral && opSize == destSize && opSize == 8) {
target.getInstrInfo().CreateSignExtensionInstructions(target, // nothing to do in all these cases
destI->getParent()->getParent(), opVal, destI, 8*destSize,
mvec, MachineCodeForInstruction::get(destI));
else
target.getInstrInfo().CreateZeroExtensionInstructions(target,
destI->getParent()->getParent(), opVal, destI, 8*destSize,
mvec, MachineCodeForInstruction::get(destI));
} else
forwardOperandNum = 0; // forward first operand to user forwardOperandNum = 0; // forward first operand to user
} else if (opType->isFloatingPoint()) { } else if (opType->isFloatingPoint()) {
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
MachineCodeForInstruction::get(destI)); CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
if (destI->getType()->isUnsigned()) if (destI->getType()->isUnsigned())
maskUnsignedResult = true; // not handled by fp->int code maskUnsignedResult = true; // not handled by fp->int code
} else
assert(0 && "Unrecognized operand type for convert-to-unsigned");
break; } else if (isIntegral) {
bool opSigned = opType->isSigned();
bool destSigned = destType->isSigned();
unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
assert(! (opSize == destSize && opSigned == destSigned) &&
"How can different int types have same size and signedness?");
bool signExtend = (opSize < destSize && opSigned ||
opSize >= destSize && destSigned);
bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
opSigned && !destSigned);
assert(!signAndZeroExtend || signExtend);
bool zeroExtendOnly = opSize >= destSize && !destSigned;
assert(!zeroExtendOnly || !signExtend);
if (signExtend) {
Value* signExtDest = (signAndZeroExtend
? new TmpInstruction(mcfi, destType, opVal)
: destI);
target.getInstrInfo().CreateSignExtensionInstructions
(target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
if (signAndZeroExtend)
target.getInstrInfo().CreateZeroExtensionInstructions
(target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
} }
else if (zeroExtendOnly) {
case 29: // reg: ToULongTy(reg) target.getInstrInfo().CreateZeroExtensionInstructions
case 30: // reg: ToLongTy(reg) (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
{ }
Value* opVal = subtreeRoot->leftChild()->getValue(); else
const Type* opType = opVal->getType();
if (opType->isIntegral() || isa<PointerType>(opType))
forwardOperandNum = 0; // forward first operand to user forwardOperandNum = 0; // forward first operand to user
else if (opType->isFloatingPoint()) {
Instruction* destI = subtreeRoot->getInstruction();
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
MachineCodeForInstruction::get(destI));
} else } else
assert(0 && "Unrecognized operand type for convert-to-signed"); assert(0 && "Unrecognized operand type for convert-to-integer");
break; break;
} }
@@ -1914,118 +2045,224 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// ELSE FALL THROUGH // ELSE FALL THROUGH
case 36: // reg: Div(reg, reg) case 36: // reg: Div(reg, reg)
{
maskUnsignedResult = true; maskUnsignedResult = true;
Add3OperandInstr(ChooseDivInstruction(target, subtreeRoot),
subtreeRoot, mvec); // If second operand of divide is smaller than 64 bits, we have
// to make sure the unused top bits are correct because they affect
// the result. These bits are already correct for unsigned values.
// They may be incorrect for signed values, so sign extend to fill in.
Instruction* divI = subtreeRoot->getInstruction();
Value* divOp2 = subtreeRoot->rightChild()->getValue();
Value* divOpToUse = divOp2;
if (divOp2->getType()->isSigned()) {
unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
if (opSize < 8) {
MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
divOpToUse = new TmpInstruction(mcfi, divOp2);
target.getInstrInfo().
CreateSignExtensionInstructions(target,
divI->getParent()->getParent(),
divOp2, divOpToUse,
8*opSize, mvec, mcfi);
}
}
mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
.addReg(subtreeRoot->leftChild()->getValue())
.addReg(divOpToUse)
.addRegDef(divI));
break; break;
}
case 37: // reg: Rem(reg, reg) case 37: // reg: Rem(reg, reg)
case 237: // reg: Rem(reg, Constant) case 237: // reg: Rem(reg, Constant)
{ {
maskUnsignedResult = true; maskUnsignedResult = true;
Instruction* remInstr = subtreeRoot->getInstruction();
MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(remInstr); Instruction* remI = subtreeRoot->getInstruction();
TmpInstruction* quot = new TmpInstruction(mcfi, Value* divOp1 = subtreeRoot->leftChild()->getValue();
subtreeRoot->leftChild()->getValue(), Value* divOp2 = subtreeRoot->rightChild()->getValue();
subtreeRoot->rightChild()->getValue());
TmpInstruction* prod = new TmpInstruction(mcfi,
quot,
subtreeRoot->rightChild()->getValue());
M = BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
.addReg(subtreeRoot->leftChild()->getValue())
.addReg(subtreeRoot->rightChild()->getValue())
.addRegDef(quot);
mvec.push_back(M);
unsigned MulOpcode = // If second operand of divide is smaller than 64 bits, we have
ChooseMulInstructionByType(subtreeRoot->getInstruction()->getType()); // to make sure the unused top bits are correct because they affect
Value *MulRHS = subtreeRoot->rightChild()->getValue(); // the result. These bits are already correct for unsigned values.
M = BuildMI(MulOpcode, 3).addReg(quot).addReg(MulRHS).addReg(prod, // They may be incorrect for signed values, so sign extend to fill in.
MOTy::Def); //
mvec.push_back(M); Value* divOpToUse = divOp2;
if (divOp2->getType()->isSigned()) {
unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
if (opSize < 8) {
divOpToUse = new TmpInstruction(mcfi, divOp2);
target.getInstrInfo().
CreateSignExtensionInstructions(target,
remI->getParent()->getParent(),
divOp2, divOpToUse,
8*opSize, mvec, mcfi);
}
}
// Now compute: result = rem V1, V2 as:
// result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
//
TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
.addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
.addReg(quot).addReg(divOpToUse).addRegDef(prod));
mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
.addReg(divOp1).addReg(prod).addRegDef(remI));
unsigned Opcode = ChooseSubInstructionByType(
subtreeRoot->getInstruction()->getType());
M = BuildMI(Opcode, 3).addReg(subtreeRoot->leftChild()->getValue())
.addReg(prod).addRegDef(subtreeRoot->getValue());
mvec.push_back(M);
break; break;
} }
case 38: // bool: And(bool, bool) case 38: // bool: And(bool, bool)
case 138: // bool: And(bool, not)
case 238: // bool: And(bool, boolconst) case 238: // bool: And(bool, boolconst)
case 338: // reg : BAnd(reg, reg) case 338: // reg : BAnd(reg, reg)
case 538: // reg : BAnd(reg, Constant) case 538: // reg : BAnd(reg, Constant)
Add3OperandInstr(V9::ANDr, subtreeRoot, mvec); Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
break; break;
case 138: // bool: And(bool, not)
case 438: // bool: BAnd(bool, bnot) case 438: // bool: BAnd(bool, bnot)
{ // Use the argument of NOT as the second argument! { // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it. // Mark the NOT node so that no code is generated for it.
// If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument( Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction())); cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent(); notNode->markFoldedIntoParent();
Value *LHS = subtreeRoot->leftChild()->getValue(); Value *lhs = subtreeRoot->leftChild()->getValue();
Value *Dest = subtreeRoot->getValue(); Value *dest = subtreeRoot->getValue();
mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(LHS).addReg(notArg) mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
.addReg(Dest, MOTy::Def)); .addReg(dest, MOTy::Def));
if (notArg->getType() == Type::BoolTy)
{ // set 1 in result register if result of above is non-zero
mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
.addReg(dest, MOTy::UseAndDef));
}
break; break;
} }
case 39: // bool: Or(bool, bool) case 39: // bool: Or(bool, bool)
case 139: // bool: Or(bool, not)
case 239: // bool: Or(bool, boolconst) case 239: // bool: Or(bool, boolconst)
case 339: // reg : BOr(reg, reg) case 339: // reg : BOr(reg, reg)
case 539: // reg : BOr(reg, Constant) case 539: // reg : BOr(reg, Constant)
Add3OperandInstr(V9::ORr, subtreeRoot, mvec); Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
break; break;
case 139: // bool: Or(bool, not)
case 439: // bool: BOr(bool, bnot) case 439: // bool: BOr(bool, bnot)
{ // Use the argument of NOT as the second argument! { // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it. // Mark the NOT node so that no code is generated for it.
// If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument( Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction())); cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent(); notNode->markFoldedIntoParent();
Value *LHS = subtreeRoot->leftChild()->getValue(); Value *lhs = subtreeRoot->leftChild()->getValue();
Value *Dest = subtreeRoot->getValue(); Value *dest = subtreeRoot->getValue();
mvec.push_back(BuildMI(V9::ORNr, 3).addReg(LHS).addReg(notArg)
.addReg(Dest, MOTy::Def)); mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
.addReg(dest, MOTy::Def));
if (notArg->getType() == Type::BoolTy)
{ // set 1 in result register if result of above is non-zero
mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
.addReg(dest, MOTy::UseAndDef));
}
break; break;
} }
case 40: // bool: Xor(bool, bool) case 40: // bool: Xor(bool, bool)
case 140: // bool: Xor(bool, not)
case 240: // bool: Xor(bool, boolconst) case 240: // bool: Xor(bool, boolconst)
case 340: // reg : BXor(reg, reg) case 340: // reg : BXor(reg, reg)
case 540: // reg : BXor(reg, Constant) case 540: // reg : BXor(reg, Constant)
Add3OperandInstr(V9::XORr, subtreeRoot, mvec); Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
break; break;
case 140: // bool: Xor(bool, not)
case 440: // bool: BXor(bool, bnot) case 440: // bool: BXor(bool, bnot)
{ // Use the argument of NOT as the second argument! { // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it. // Mark the NOT node so that no code is generated for it.
// If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument( Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction())); cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent(); notNode->markFoldedIntoParent();
Value *LHS = subtreeRoot->leftChild()->getValue(); Value *lhs = subtreeRoot->leftChild()->getValue();
Value *Dest = subtreeRoot->getValue(); Value *dest = subtreeRoot->getValue();
mvec.push_back(BuildMI(V9::XNORr, 3).addReg(LHS).addReg(notArg) mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
.addReg(Dest, MOTy::Def)); .addReg(dest, MOTy::Def));
if (notArg->getType() == Type::BoolTy)
{ // set 1 in result register if result of above is non-zero
mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
.addReg(dest, MOTy::UseAndDef));
}
break; break;
} }
case 41: // boolconst: SetCC(reg, Constant) case 41: // setCCconst: SetCC(reg, Constant)
{ // Comparison is with a constant:
// //
// If the SetCC was folded into the user (parent), it will be // If the bool result must be computed into a register (see below),
// caught above. All other cases are the same as case 42, // and the constant is int ZERO, we can use the MOVR[op] instructions
// so just fall through. // and avoid the SUBcc instruction entirely.
// Otherwise this is just the same as case 42, so just fall through.
// //
// The result of the SetCC must be computed and stored in a register if
// it is used outside the current basic block (so it must be computed
// as a boolreg) or it is used by anything other than a branch.
// We will use a conditional move to do this.
//
Instruction* setCCInstr = subtreeRoot->getInstruction();
bool computeBoolVal = (subtreeRoot->parent() == NULL ||
! AllUsesAreBranches(setCCInstr));
if (computeBoolVal)
{
InstrTreeNode* constNode = subtreeRoot->rightChild();
assert(constNode &&
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
Constant *constVal = cast<Constant>(constNode->getValue());
bool isValidConst;
if ((constVal->getType()->isInteger()
|| isa<PointerType>(constVal->getType()))
&& GetConstantValueAsSignedInt(constVal, isValidConst) == 0
&& isValidConst)
{
// That constant is an integer zero after all...
// Use a MOVR[op] to compute the boolean result
// Unconditionally set register to 0
mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
.addRegDef(setCCInstr));
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
mvec.push_back(BuildMI(movOpCode, 3)
.addReg(subtreeRoot->leftChild()->getValue())
.addZImm(1).addReg(setCCInstr, MOTy::UseAndDef));
break;
}
}
// ELSE FALL THROUGH
}
case 42: // bool: SetCC(reg, reg): case 42: // bool: SetCC(reg, reg):
{ {
// This generates a SUBCC instruction, putting the difference in a // This generates a SUBCC instruction, putting the difference in a
@@ -2033,7 +2270,9 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// //
Instruction* setCCInstr = subtreeRoot->getInstruction(); Instruction* setCCInstr = subtreeRoot->getInstruction();
Value* leftVal = subtreeRoot->leftChild()->getValue(); Value* leftVal = subtreeRoot->leftChild()->getValue();
bool isFPCompare = leftVal->getType()->isFloatingPoint(); Value* rightVal = subtreeRoot->rightChild()->getValue();
const Type* opType = leftVal->getType();
bool isFPCompare = opType->isFloatingPoint();
// If the boolean result of the SetCC is used outside the current basic // If the boolean result of the SetCC is used outside the current basic
// block (so it must be computed as a boolreg) or is used by anything // block (so it must be computed as a boolreg) or is used by anything
@@ -2058,26 +2297,52 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
setCCInstr->getParent()->getParent(), setCCInstr->getParent()->getParent(),
leftVal->getType(), leftVal->getType(),
MachineCodeForInstruction::get(setCCInstr)); MachineCodeForInstruction::get(setCCInstr));
// If the operands are signed values smaller than 4 bytes, then they
// must be sign-extended in order to do a valid 32-bit comparison
// and get the right result in the 32-bit CC register (%icc).
//
Value* leftOpToUse = leftVal;
Value* rightOpToUse = rightVal;
if (opType->isIntegral() && opType->isSigned()) {
unsigned opSize = target.getTargetData().getTypeSize(opType);
if (opSize < 4) {
MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(setCCInstr);
// create temporary virtual regs. to hold the sign-extensions
leftOpToUse = new TmpInstruction(mcfi, leftVal);
rightOpToUse = new TmpInstruction(mcfi, rightVal);
// sign-extend each operand and put the result in the temporary reg.
target.getInstrInfo().CreateSignExtensionInstructions
(target, setCCInstr->getParent()->getParent(),
leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
target.getInstrInfo().CreateSignExtensionInstructions
(target, setCCInstr->getParent()->getParent(),
rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
}
}
if (! isFPCompare) { if (! isFPCompare) {
// Integer condition: set CC and discard result. // Integer condition: set CC and discard result.
M = BuildMI(V9::SUBccr, 4) mvec.push_back(BuildMI(V9::SUBccr, 4)
.addReg(subtreeRoot->leftChild()->getValue()) .addReg(leftOpToUse)
.addReg(subtreeRoot->rightChild()->getValue()) .addReg(rightOpToUse)
.addMReg(target.getRegInfo().getZeroRegNum(),MOTy::Def) .addMReg(target.getRegInfo().getZeroRegNum(),MOTy::Def)
.addCCReg(tmpForCC, MOTy::Def); .addCCReg(tmpForCC, MOTy::Def));
} else { } else {
// FP condition: dest of FCMP should be some FCCn register // FP condition: dest of FCMP should be some FCCn register
M = BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
.addCCReg(tmpForCC, MOTy::Def) .addCCReg(tmpForCC, MOTy::Def)
.addReg(subtreeRoot->leftChild()->getValue()) .addReg(leftOpToUse)
.addReg(subtreeRoot->rightChild()->getValue()); .addReg(rightOpToUse));
} }
mvec.push_back(M);
if (computeBoolVal) { if (computeBoolVal) {
MachineOpCode movOpCode = (isFPCompare MachineOpCode movOpCode = (isFPCompare
? ChooseMovFpcciInstruction(subtreeRoot) ? ChooseMovFpcciInstruction(subtreeRoot)
: ChooseMovpcciAfterSub(subtreeRoot)); : ChooseMovpcciForSetCC(subtreeRoot));
// Unconditionally set register to 0 // Unconditionally set register to 0
M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
@@ -2172,8 +2437,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// This can also handle any intrinsics that are just function calls. // This can also handle any intrinsics that are just function calls.
// //
if (! specialIntrinsic) { if (! specialIntrinsic) {
MachineFunction& MF = Function* currentFunc = callInstr->getParent()->getParent();
MachineFunction::get(callInstr->getParent()->getParent()); MachineFunction& MF = MachineFunction::get(currentFunc);
MachineCodeForInstruction& mcfi = MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(callInstr); MachineCodeForInstruction::get(callInstr);
const UltraSparcRegInfo& regInfo = const UltraSparcRegInfo& regInfo =
@@ -2212,18 +2477,44 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
assert(callInstr->getOperand(0) == callee assert(callInstr->getOperand(0) == callee
&& "This is assumed in the loop below!"); && "This is assumed in the loop below!");
// Insert sign-extension instructions for small signed values,
// if this is an unknown function (i.e., called via a funcptr)
// or an external one (i.e., which may not be compiled by llc).
//
if (calledFunc == NULL || calledFunc->isExternal()) {
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
Value* argVal = callInstr->getOperand(i);
const Type* argType = argVal->getType();
if (argType->isIntegral() && argType->isSigned()) {
unsigned argSize = target.getTargetData().getTypeSize(argType);
if (argSize <= 4) {
// create a temporary virtual reg. to hold the sign-extension
TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
// sign-extend argVal and put the result in the temporary reg.
target.getInstrInfo().CreateSignExtensionInstructions
(target, currentFunc, argVal, argExtend,
8*argSize, mvec, mcfi);
// replace argVal with argExtend in CallArgsDescriptor
argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
}
}
}
}
// Insert copy instructions to get all the arguments into // Insert copy instructions to get all the arguments into
// all the places that they need to be. // all the places that they need to be.
// //
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
int argNo = i-1; int argNo = i-1;
Value* argVal = callInstr->getOperand(i); CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
const Type* argType = argVal->getType(); const Type* argType = argVal->getType();
unsigned regType = regInfo.getRegType(argType); unsigned regType = regInfo.getRegType(argType);
unsigned argSize = target.getTargetData().getTypeSize(argType); unsigned argSize = target.getTargetData().getTypeSize(argType);
int regNumForArg = TargetRegInfo::getInvalidRegNum(); int regNumForArg = TargetRegInfo::getInvalidRegNum();
unsigned regClassIDOfArgReg; unsigned regClassIDOfArgReg;
CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
// Check for FP arguments to varargs functions. // Check for FP arguments to varargs functions.
// Any such argument in the first $K$ args must be passed in an // Any such argument in the first $K$ args must be passed in an
@@ -2505,20 +2796,43 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
if (dest->getType()->isUnsigned()) { if (dest->getType()->isUnsigned()) {
unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
if (destSize <= 4) { if (destSize <= 4) {
// Mask high bits. Use a TmpInstruction to represent the // Mask high 64 - N bits, where N = 4*destSize.
// Use a TmpInstruction to represent the
// intermediate result before masking. Since those instructions // intermediate result before masking. Since those instructions
// have already been generated, go back and substitute tmpI // have already been generated, go back and substitute tmpI
// for dest in the result position of each one of them. // for dest in the result position of each one of them.
TmpInstruction *tmpI = //
new TmpInstruction(MachineCodeForInstruction::get(dest), MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
dest->getType(), dest, NULL, "maskHi"); TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
dest, NULL, "maskHi");
Value* srlArgToUse = tmpI;
for (unsigned i=0, N=mvec.size(); i < N; ++i) unsigned numSubst = 0;
mvec[i]->substituteValue(dest, tmpI); for (unsigned i=0, N=mvec.size(); i < N; ++i) {
bool someArgsWereIgnored = false;
numSubst += mvec[i]->substituteValue(dest, tmpI, /*defsOnly*/ true,
/*defsAndUses*/ false,
someArgsWereIgnored);
assert(!someArgsWereIgnored &&
"Operand `dest' exists but not replaced: probably bogus!");
}
assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
// Left shift 32-N if size (N) is less than 32 bits.
// Use another tmp. virtual registe to represent this result.
if (destSize < 4) {
srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
tmpI, NULL, "maskHi2");
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
.addZImm(8*(4-destSize))
.addReg(srlArgToUse, MOTy::Def));
}
// Logical right shift 32-N to get zero extension in top 64-N bits.
mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
.addZImm(8*(4-destSize)).addReg(dest, MOTy::Def));
M = BuildMI(V9::SRLi5, 3).addReg(tmpI).addZImm(8*(4-destSize))
.addReg(dest, MOTy::Def);
mvec.push_back(M);
} else if (destSize < 8) { } else if (destSize < 8) {
assert(0 && "Unsupported type size: 32 < size < 64 bits"); assert(0 && "Unsupported type size: 32 < size < 64 bits");
} }