mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 21:32:10 +00:00
Initial checkin
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6414 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2cc36e6997
commit
96191aba7d
251
runtime/GCCLibraries/libc/qsort.c
Normal file
251
runtime/GCCLibraries/libc/qsort.c
Normal file
@ -0,0 +1,251 @@
|
||||
/* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
/* If you consider tuning this algorithm, you should consult first:
|
||||
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
|
||||
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
|
||||
|
||||
#if 0
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
/* Byte-wise swap two items of size SIZE. */
|
||||
#define SWAP(a, b, size) \
|
||||
do \
|
||||
{ \
|
||||
register size_t __size = (size); \
|
||||
register char *__a = (a), *__b = (b); \
|
||||
do \
|
||||
{ \
|
||||
char __tmp = *__a; \
|
||||
*__a++ = *__b; \
|
||||
*__b++ = __tmp; \
|
||||
} while (--__size > 0); \
|
||||
} while (0)
|
||||
|
||||
/* Discontinue quicksort algorithm when partition gets below this size.
|
||||
This particular magic number was chosen to work best on a Sun 4/260. */
|
||||
#define MAX_THRESH 4
|
||||
|
||||
/* Stack node declarations used to store unfulfilled partition obligations. */
|
||||
typedef struct
|
||||
{
|
||||
char *lo;
|
||||
char *hi;
|
||||
} stack_node;
|
||||
|
||||
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
||||
/* The stack needs log (total_elements) entries (we could even subtract
|
||||
log(MAX_THRESH)). Since total_elements has type size_t, we get as
|
||||
upper bound for log (total_elements):
|
||||
bits per byte (CHAR_BIT) * sizeof(size_t). */
|
||||
#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
|
||||
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
|
||||
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
|
||||
#define STACK_NOT_EMPTY (stack < top)
|
||||
|
||||
|
||||
/* Order size using quicksort. This implementation incorporates
|
||||
four optimizations discussed in Sedgewick:
|
||||
|
||||
1. Non-recursive, using an explicit stack of pointer that store the
|
||||
next array partition to sort. To save time, this maximum amount
|
||||
of space required to store an array of SIZE_MAX is allocated on the
|
||||
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
|
||||
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
|
||||
Pretty cheap, actually.
|
||||
|
||||
2. Chose the pivot element using a median-of-three decision tree.
|
||||
This reduces the probability of selecting a bad pivot value and
|
||||
eliminates certain extraneous comparisons.
|
||||
|
||||
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
||||
insertion sort to order the MAX_THRESH items within each partition.
|
||||
This is a big win, since insertion sort is faster for small, mostly
|
||||
sorted array segments.
|
||||
|
||||
4. The larger of the two sub-partitions is always pushed onto the
|
||||
stack first, with the algorithm then concentrating on the
|
||||
smaller partition. This *guarantees* no more than log (total_elems)
|
||||
stack size is needed (actually O(1) in this case)! */
|
||||
|
||||
typedef int(*__compar_fn_t)(const void *, const void *);
|
||||
void
|
||||
qsort (void *const pbase, size_t total_elems, size_t size,
|
||||
__compar_fn_t cmp)
|
||||
{
|
||||
register char *base_ptr = (char *) pbase;
|
||||
|
||||
const size_t max_thresh = MAX_THRESH * size;
|
||||
|
||||
if (total_elems == 0)
|
||||
/* Avoid lossage with unsigned arithmetic below. */
|
||||
return;
|
||||
|
||||
if (total_elems > MAX_THRESH)
|
||||
{
|
||||
char *lo = base_ptr;
|
||||
char *hi = &lo[size * (total_elems - 1)];
|
||||
stack_node stack[STACK_SIZE];
|
||||
stack_node *top = stack + 1;
|
||||
|
||||
while (STACK_NOT_EMPTY)
|
||||
{
|
||||
char *left_ptr;
|
||||
char *right_ptr;
|
||||
|
||||
/* Select median value from among LO, MID, and HI. Rearrange
|
||||
LO and HI so the three values are sorted. This lowers the
|
||||
probability of picking a pathological pivot value and
|
||||
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
|
||||
the while loops. */
|
||||
|
||||
char *mid = lo + size * ((hi - lo) / size >> 1);
|
||||
|
||||
if ((*cmp) ((void *) mid, (void *) lo) < 0)
|
||||
SWAP (mid, lo, size);
|
||||
if ((*cmp) ((void *) hi, (void *) mid) < 0)
|
||||
SWAP (mid, hi, size);
|
||||
else
|
||||
goto jump_over;
|
||||
if ((*cmp) ((void *) mid, (void *) lo) < 0)
|
||||
SWAP (mid, lo, size);
|
||||
jump_over:;
|
||||
|
||||
left_ptr = lo + size;
|
||||
right_ptr = hi - size;
|
||||
|
||||
/* Here's the famous ``collapse the walls'' section of quicksort.
|
||||
Gotta like those tight inner loops! They are the main reason
|
||||
that this algorithm runs much faster than others. */
|
||||
do
|
||||
{
|
||||
while ((*cmp) ((void *) left_ptr, (void *) mid) < 0)
|
||||
left_ptr += size;
|
||||
|
||||
while ((*cmp) ((void *) mid, (void *) right_ptr) < 0)
|
||||
right_ptr -= size;
|
||||
|
||||
if (left_ptr < right_ptr)
|
||||
{
|
||||
SWAP (left_ptr, right_ptr, size);
|
||||
if (mid == left_ptr)
|
||||
mid = right_ptr;
|
||||
else if (mid == right_ptr)
|
||||
mid = left_ptr;
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
}
|
||||
else if (left_ptr == right_ptr)
|
||||
{
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (left_ptr <= right_ptr);
|
||||
|
||||
/* Set up pointers for next iteration. First determine whether
|
||||
left and right partitions are below the threshold size. If so,
|
||||
ignore one or both. Otherwise, push the larger partition's
|
||||
bounds on the stack and continue sorting the smaller one. */
|
||||
|
||||
if ((size_t) (right_ptr - lo) <= max_thresh)
|
||||
{
|
||||
if ((size_t) (hi - left_ptr) <= max_thresh)
|
||||
/* Ignore both small partitions. */
|
||||
POP (lo, hi);
|
||||
else
|
||||
/* Ignore small left partition. */
|
||||
lo = left_ptr;
|
||||
}
|
||||
else if ((size_t) (hi - left_ptr) <= max_thresh)
|
||||
/* Ignore small right partition. */
|
||||
hi = right_ptr;
|
||||
else if ((right_ptr - lo) > (hi - left_ptr))
|
||||
{
|
||||
/* Push larger left partition indices. */
|
||||
PUSH (lo, right_ptr);
|
||||
lo = left_ptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Push larger right partition indices. */
|
||||
PUSH (left_ptr, hi);
|
||||
hi = right_ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
||||
is completely sorted using insertion sort, since this is efficient
|
||||
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
||||
of the array to sort, and END_PTR points at the very last element in
|
||||
the array (*not* one beyond it!). */
|
||||
|
||||
#define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
|
||||
{
|
||||
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
|
||||
char *tmp_ptr = base_ptr;
|
||||
char *thresh = min(end_ptr, base_ptr + max_thresh);
|
||||
register char *run_ptr;
|
||||
|
||||
/* Find smallest element in first threshold and place it at the
|
||||
array's beginning. This is the smallest array element,
|
||||
and the operation speeds up insertion sort's inner loop. */
|
||||
|
||||
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
||||
if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
|
||||
tmp_ptr = run_ptr;
|
||||
|
||||
if (tmp_ptr != base_ptr)
|
||||
SWAP (tmp_ptr, base_ptr, size);
|
||||
|
||||
/* Insertion sort, running from left-hand-side up to right-hand-side. */
|
||||
|
||||
run_ptr = base_ptr + size;
|
||||
while ((run_ptr += size) <= end_ptr)
|
||||
{
|
||||
tmp_ptr = run_ptr - size;
|
||||
while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
|
||||
tmp_ptr -= size;
|
||||
|
||||
tmp_ptr += size;
|
||||
if (tmp_ptr != run_ptr)
|
||||
{
|
||||
char *trav;
|
||||
|
||||
trav = run_ptr + size;
|
||||
while (--trav >= run_ptr)
|
||||
{
|
||||
char c = *trav;
|
||||
char *hi, *lo;
|
||||
|
||||
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
||||
*hi = *lo;
|
||||
*hi = c;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user