mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-20 12:31:40 +00:00
A lot of cleanups and documentation improvements, as well as a few corner case fixes. Most
of this was suggested by Chris. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50441 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
0396cd33ca
commit
9862f31533
@ -7,7 +7,10 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the Dead Loop Elimination Pass.
|
||||
// This file implements the Dead Loop Elimination Pass. This pass is
|
||||
// responsible for eliminating loops with non-infinite computable trip counts
|
||||
// that have no side effects or volatile instructions, and do not contribute
|
||||
// to the computation of the function's return value.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -31,8 +34,10 @@ namespace {
|
||||
// Possibly eliminate loop L if it is dead.
|
||||
bool runOnLoop(Loop* L, LPPassManager& LPM);
|
||||
|
||||
bool SingleDominatingExit(Loop* L);
|
||||
bool IsLoopDead(Loop* L);
|
||||
bool SingleDominatingExit(Loop* L,
|
||||
SmallVector<BasicBlock*, 4>& exitingBlocks);
|
||||
bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
|
||||
SmallVector<BasicBlock*, 4>& exitBlocks);
|
||||
bool IsLoopInvariantInst(Instruction *I, Loop* L);
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage& AU) const {
|
||||
@ -56,24 +61,34 @@ LoopPass* llvm::createLoopDeletionPass() {
|
||||
return new LoopDeletion();
|
||||
}
|
||||
|
||||
bool LoopDeletion::SingleDominatingExit(Loop* L) {
|
||||
SmallVector<BasicBlock*, 4> exitingBlocks;
|
||||
L->getExitingBlocks(exitingBlocks);
|
||||
/// SingleDominatingExit - Checks that there is only a single blocks that
|
||||
/// branches out of the loop, and that it also dominates the latch block. Loops
|
||||
/// with multiple or non-latch-dominating exiting blocks could be dead, but we'd
|
||||
/// have to do more extensive analysis to make sure, for instance, that the
|
||||
/// control flow logic involves was or could be made loop-invariant.
|
||||
bool LoopDeletion::SingleDominatingExit(Loop* L,
|
||||
SmallVector<BasicBlock*, 4>& exitingBlocks) {
|
||||
|
||||
if (exitingBlocks.size() != 1)
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
BasicBlock* latch = L->getLoopLatch();
|
||||
if (!latch)
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
DominatorTree& DT = getAnalysis<DominatorTree>();
|
||||
if (DT.dominates(exitingBlocks[0], latch))
|
||||
return exitingBlocks[0];
|
||||
return true;
|
||||
else
|
||||
return 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// IsLoopInvariantInst - Checks if an instruction is invariant with respect to
|
||||
/// a loop, which is defined as being true if all of its operands are defined
|
||||
/// outside of the loop. These instructions can be hoisted out of the loop
|
||||
/// if their results are needed. This could be made more aggressive by
|
||||
/// recursively checking the operands for invariance, but it's not clear that
|
||||
/// it's worth it.
|
||||
bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L) {
|
||||
// PHI nodes are not loop invariant if defined in the loop.
|
||||
if (isa<PHINode>(I) && L->contains(I->getParent()))
|
||||
@ -88,19 +103,20 @@ bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LoopDeletion::IsLoopDead(Loop* L) {
|
||||
SmallVector<BasicBlock*, 1> exitingBlocks;
|
||||
L->getExitingBlocks(exitingBlocks);
|
||||
/// IsLoopDead - Determined if a loop is dead. This assumes that we've already
|
||||
/// checked for unique exit and exiting blocks, and that the code is in LCSSA
|
||||
/// form.
|
||||
bool LoopDeletion::IsLoopDead(Loop* L,
|
||||
SmallVector<BasicBlock*, 4>& exitingBlocks,
|
||||
SmallVector<BasicBlock*, 4>& exitBlocks) {
|
||||
BasicBlock* exitingBlock = exitingBlocks[0];
|
||||
|
||||
// Get the set of out-of-loop blocks that the exiting block branches to.
|
||||
SmallVector<BasicBlock*, 8> exitBlocks;
|
||||
L->getUniqueExitBlocks(exitBlocks);
|
||||
if (exitBlocks.size() > 1)
|
||||
return false;
|
||||
BasicBlock* exitBlock = exitBlocks[0];
|
||||
|
||||
// Make sure that all PHI entries coming from the loop are loop invariant.
|
||||
// Because the code is in LCSSA form, any values used outside of the loop
|
||||
// must pass through a PHI in the exit block, meaning that this check is
|
||||
// sufficient to guarantee that no loop-variant values are used outside
|
||||
// of the loop.
|
||||
BasicBlock::iterator BI = exitBlock->begin();
|
||||
while (PHINode* P = dyn_cast<PHINode>(BI)) {
|
||||
Value* incoming = P->getIncomingValueForBlock(exitingBlock);
|
||||
@ -112,12 +128,18 @@ bool LoopDeletion::IsLoopDead(Loop* L) {
|
||||
}
|
||||
|
||||
// Make sure that no instructions in the block have potential side-effects.
|
||||
// This includes instructions that could write to memory, and loads that are
|
||||
// marked volatile. This could be made more aggressive by using aliasing
|
||||
// information to identify readonly and readnone calls.
|
||||
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
||||
LI != LE; ++LI) {
|
||||
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
|
||||
BI != BE; ++BI) {
|
||||
if (BI->mayWriteToMemory())
|
||||
return false;
|
||||
else if (LoadInst* L = dyn_cast<LoadInst>(BI))
|
||||
if (L->isVolatile())
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
@ -128,10 +150,20 @@ bool LoopDeletion::IsLoopDead(Loop* L) {
|
||||
/// observable behavior of the program other than finite running time. Note
|
||||
/// we do ensure that this never remove a loop that might be infinite, as doing
|
||||
/// so could change the halting/non-halting nature of a program.
|
||||
/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
|
||||
/// in order to make various safety checks work.
|
||||
bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
|
||||
// Don't remove loops for which we can't solve the trip count.
|
||||
// They could be infinite, in which case we'd be changing program behavior.
|
||||
if (L->getTripCount())
|
||||
SmallVector<BasicBlock*, 4> exitingBlocks;
|
||||
L->getExitingBlocks(exitingBlocks);
|
||||
|
||||
SmallVector<BasicBlock*, 4> exitBlocks;
|
||||
L->getUniqueExitBlocks(exitBlocks);
|
||||
|
||||
// We require that the loop only have a single exit block. Otherwise, we'd
|
||||
// be in the situation of needing to be able to solve statically which exit
|
||||
// block will be branced to, or trying to preserve the branching logic in
|
||||
// a loop invariant manner.
|
||||
if (exitBlocks.size() != 1)
|
||||
return false;
|
||||
|
||||
// We can only remove the loop if there is a preheader that we can
|
||||
@ -145,23 +177,22 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
|
||||
if (L->begin() != L->end())
|
||||
return false;
|
||||
|
||||
// Don't remove loops for which we can't solve the trip count.
|
||||
// They could be infinite, in which case we'd be changing program behavior.
|
||||
if (L->getTripCount())
|
||||
return false;
|
||||
|
||||
// Loops with multiple exits or exits that don't dominate the latch
|
||||
// are too complicated to handle correctly.
|
||||
if (!SingleDominatingExit(L))
|
||||
if (!SingleDominatingExit(L, exitingBlocks))
|
||||
return false;
|
||||
|
||||
// Finally, we have to check that the loop really is dead.
|
||||
if (!IsLoopDead(L))
|
||||
if (!IsLoopDead(L, exitingBlocks, exitBlocks))
|
||||
return false;
|
||||
|
||||
// Now that we know the removal is safe, change the branch from the preheader
|
||||
// to go to the single exiting block.
|
||||
SmallVector<BasicBlock*, 1> exitingBlocks;
|
||||
L->getExitingBlocks(exitingBlocks);
|
||||
BasicBlock* exitingBlock = exitingBlocks[0];
|
||||
|
||||
SmallVector<BasicBlock*, 1> exitBlocks;
|
||||
L->getUniqueExitBlocks(exitBlocks);
|
||||
// Now that we know the removal is safe, remove the loop by changing the
|
||||
// branch from the preheader to go to the single exiting block.
|
||||
BasicBlock* exitBlock = exitBlocks[0];
|
||||
|
||||
// Because we're deleting a large chunk of code at once, the sequence in which
|
||||
@ -181,39 +212,30 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
|
||||
|
||||
// Connect the preheader directly to the exit block.
|
||||
TerminatorInst* TI = preheader->getTerminator();
|
||||
if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
|
||||
if (BI->isUnconditional())
|
||||
BI->setSuccessor(0, exitBlock);
|
||||
else if (L->contains(BI->getSuccessor(0)))
|
||||
BI->setSuccessor(0, exitBlock);
|
||||
else
|
||||
BI->setSuccessor(1, exitBlock);
|
||||
} else {
|
||||
// FIXME: Support switches
|
||||
return false;
|
||||
}
|
||||
|
||||
TI->replaceUsesOfWith(L->getHeader(), exitBlock);
|
||||
|
||||
// Rewrite phis in the exit block to get their inputs from
|
||||
// the preheader instead of the exiting block.
|
||||
BasicBlock::iterator BI = exitBlock->begin();
|
||||
while (PHINode* P = dyn_cast<PHINode>(BI)) {
|
||||
unsigned i = P->getBasicBlockIndex(exitingBlock);
|
||||
P->setIncomingBlock(i, preheader);
|
||||
P->replaceUsesOfWith(exitBlock, preheader);
|
||||
BI++;
|
||||
}
|
||||
|
||||
// Update lots of internal structures...
|
||||
// Update the dominator tree and remove the instructions and blocks that will
|
||||
// be deleted from the reference counting scheme.
|
||||
DominatorTree& DT = getAnalysis<DominatorTree>();
|
||||
SmallPtrSet<DomTreeNode*, 8> ChildNodes;
|
||||
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
||||
LI != LE; ++LI) {
|
||||
// Move all of the block's children to be children of the preheader, which
|
||||
// allows us to remove the domtree entry for the block.
|
||||
SmallPtrSet<DomTreeNode*, 8> childNodes;
|
||||
childNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
|
||||
for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = childNodes.begin(),
|
||||
DE = childNodes.end(); DI != DE; ++DI)
|
||||
ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
|
||||
for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
|
||||
DE = ChildNodes.end(); DI != DE; ++DI)
|
||||
DT.changeImmediateDominator(*DI, DT[preheader]);
|
||||
|
||||
ChildNodes.clear();
|
||||
DT.eraseNode(*LI);
|
||||
|
||||
// Drop all references between the instructions and the block so
|
||||
@ -228,16 +250,11 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
|
||||
|
||||
// Erase the instructions and the blocks without having to worry
|
||||
// about ordering because we already dropped the references.
|
||||
// NOTE: This iteration is safe because erasing the block does not remove its
|
||||
// entry from the loop's block list. We do that in the next section.
|
||||
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
||||
LI != LE; ++LI) {
|
||||
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
|
||||
BI != BE; ) {
|
||||
Instruction* I = BI++;
|
||||
I->eraseFromParent();
|
||||
}
|
||||
|
||||
LI != LE; ++LI)
|
||||
(*LI)->eraseFromParent();
|
||||
}
|
||||
|
||||
// Finally, the blocks from loopinfo. This has to happen late because
|
||||
// otherwise our loop iterators won't work.
|
||||
|
Loading…
x
Reference in New Issue
Block a user