mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-07 14:33:15 +00:00
Comments added. It now generates V5TE multiply instructions. However, it is still necessary to model PUWLSH bits more clearly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41627 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
37fb5b154c
commit
9c1a3827ce
@ -54,9 +54,9 @@ namespace {
|
||||
}
|
||||
|
||||
void emitInstruction(const MachineInstr &MI);
|
||||
unsigned getBinaryCodeForInstr(const MachineInstr &MI);
|
||||
int getMachineOpValue(const MachineInstr &MI, unsigned OpIndex);
|
||||
unsigned getBaseOpcodeFor(const TargetInstrDescriptor *TID);
|
||||
unsigned getBinaryCodeForInstr(const MachineInstr &MI);
|
||||
|
||||
void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
|
||||
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
|
||||
@ -64,6 +64,8 @@ namespace {
|
||||
int Disp = 0, unsigned PCAdj = 0 );
|
||||
void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
|
||||
unsigned PCAdj = 0);
|
||||
void emitGlobalConstant(const Constant *CV);
|
||||
void emitMachineBasicBlock(MachineBasicBlock *BB);
|
||||
|
||||
private:
|
||||
int getShiftOp(const MachineOperand &MO);
|
||||
@ -100,10 +102,13 @@ bool Emitter::runOnMachineFunction(MachineFunction &MF) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/// getBaseOpcodeFor - Return the opcode value
|
||||
unsigned Emitter::getBaseOpcodeFor(const TargetInstrDescriptor *TID) {
|
||||
return (TID->TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
|
||||
}
|
||||
|
||||
/// getShiftOp - Verify which is the shift opcode (bit[6:5]) of the
|
||||
/// machine operand.
|
||||
int Emitter::getShiftOp(const MachineOperand &MO) {
|
||||
unsigned ShiftOp = 0x0;
|
||||
switch(ARM_AM::getAM2ShiftOpc(MO.getImmedValue())) {
|
||||
@ -133,20 +138,18 @@ int Emitter::getMachineOpValue(const MachineInstr &MI, unsigned OpIndex) {
|
||||
rv = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
|
||||
} else if (MO.isImmediate()) {
|
||||
rv = MO.getImmedValue();
|
||||
} else if (MO.isGlobalAddress() || MO.isExternalSymbol() ||
|
||||
MO.isConstantPoolIndex() || MO.isJumpTableIndex()) {
|
||||
|
||||
if (MO.isGlobalAddress()) {
|
||||
emitGlobalAddressForCall(MO.getGlobal(), true);
|
||||
} else if (MO.isExternalSymbol()) {
|
||||
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
|
||||
} else if (MO.isConstantPoolIndex()) {
|
||||
emitConstPoolAddress(MO.getConstantPoolIndex(), ARM::reloc_arm_relative);
|
||||
} else if (MO.isJumpTableIndex()) {
|
||||
emitJumpTableAddress(MO.getJumpTableIndex(), ARM::reloc_arm_relative);
|
||||
}
|
||||
|
||||
} else if (MO.isGlobalAddress()) {
|
||||
emitGlobalAddressForCall(MO.getGlobal(), false);
|
||||
} else if (MO.isExternalSymbol()) {
|
||||
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
|
||||
} else if (MO.isConstantPoolIndex()) {
|
||||
emitConstPoolAddress(MO.getConstantPoolIndex(), ARM::reloc_arm_relative);
|
||||
} else if (MO.isJumpTableIndex()) {
|
||||
emitJumpTableAddress(MO.getJumpTableIndex(), ARM::reloc_arm_relative);
|
||||
} else if (MO.isMachineBasicBlock()) {
|
||||
emitMachineBasicBlock(MO.getMachineBasicBlock());
|
||||
}
|
||||
|
||||
return rv;
|
||||
}
|
||||
|
||||
@ -186,7 +189,11 @@ void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
|
||||
Reloc, JTI, PCAdj));
|
||||
}
|
||||
|
||||
|
||||
/// emitMachineBasicBlock - Emit the specified address basic block.
|
||||
void Emitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
|
||||
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
|
||||
ARM::reloc_arm_branch, BB));
|
||||
}
|
||||
|
||||
void Emitter::emitInstruction(const MachineInstr &MI) {
|
||||
NumEmitted++; // Keep track of the # of mi's emitted
|
||||
@ -196,6 +203,7 @@ void Emitter::emitInstruction(const MachineInstr &MI) {
|
||||
unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
|
||||
const unsigned opcode = MI.getOpcode();
|
||||
// initial instruction mask
|
||||
unsigned Value = 0xE0000000;
|
||||
unsigned op;
|
||||
|
||||
@ -204,10 +212,11 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
switch(Desc->TSFlags & ARMII::FormMask) {
|
||||
default: {
|
||||
assert(0 && "Unknown instruction subtype!");
|
||||
// treat special instruction CLZ
|
||||
if(opcode == ARM::CLZ) {
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op << 12;
|
||||
Value |= op << ARMII::RegRdShift;
|
||||
|
||||
// set second operand
|
||||
op = getMachineOpValue(MI,1);
|
||||
@ -215,9 +224,51 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ARMII::MulFrm: {
|
||||
Value |= 9 << 4;
|
||||
case ARMII::MulSMLAW:
|
||||
case ARMII::MulSMULW:
|
||||
// set bit W(21)
|
||||
Value |= 1 << 21;
|
||||
case ARMII::MulSMLA:
|
||||
case ARMII::MulSMUL: {
|
||||
// set bit W(21)
|
||||
Value |= 1 << 24;
|
||||
|
||||
// set opcode (bit[7:4]). For more information, see ARM-ARM page A3-31
|
||||
// SMLA<x><y> - 1yx0
|
||||
// SMLAW<y> - 1y00
|
||||
// SMULW<y> - 1y10
|
||||
// SMUL<x><y> - 1yx0
|
||||
unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
|
||||
Value |= BaseOpcode << 4;
|
||||
|
||||
unsigned Format = (Desc->TSFlags & ARMII::FormMask);
|
||||
if (Format == ARMII::MulSMUL)
|
||||
Value |= 1 << 22;
|
||||
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op << ARMII::RegRnShift;
|
||||
|
||||
// set second operand
|
||||
op = getMachineOpValue(MI,1);
|
||||
Value |= op;
|
||||
|
||||
// set third operand
|
||||
op = getMachineOpValue(MI,2);
|
||||
Value |= op << ARMII::RegRsShift;
|
||||
|
||||
// instructions SMLA and SMLAW have a fourth operand
|
||||
if (Format != ARMII::MulSMULW && Format != ARMII::MulSMUL) {
|
||||
op = getMachineOpValue(MI,3);
|
||||
Value |= op << ARMII::RegRdShift;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case ARMII::MulFrm: {
|
||||
// bit[7:4] is always 9
|
||||
Value |= 9 << 4;
|
||||
// set opcode (bit[23:20])
|
||||
unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
|
||||
Value |= BaseOpcode << 20;
|
||||
|
||||
@ -226,40 +277,53 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op << (isMUL || isMLA ? 16 : 12);
|
||||
Value |= op << (isMUL || isMLA ? ARMII::RegRnShift : ARMII::RegRdShift);
|
||||
|
||||
// set second operand
|
||||
op = getMachineOpValue(MI,1);
|
||||
Value |= op << (isMUL || isMLA ? 0 : 16);
|
||||
Value |= op << (isMUL || isMLA ? 0 : ARMII::RegRnShift);
|
||||
|
||||
// set third operand
|
||||
op = getMachineOpValue(MI,2);
|
||||
Value |= op << (isMUL || isMLA ? 8 : 0);
|
||||
Value |= op << (isMUL || isMLA ? ARMII::RegRsShift : 0);
|
||||
|
||||
// multiply instructions (except MUL), have a fourth operand
|
||||
if (!isMUL) {
|
||||
op = getMachineOpValue(MI,3);
|
||||
Value |= op << (isMLA ? 12 : 8);
|
||||
Value |= op << (isMLA ? ARMII::RegRdShift : ARMII::RegRsShift);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case ARMII::Branch: {
|
||||
// set opcode (bit[27:24])
|
||||
unsigned BaseOpcode = getBaseOpcodeFor(Desc);
|
||||
Value |= BaseOpcode << 24;
|
||||
|
||||
// set signed_immed_24 field
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op;
|
||||
|
||||
// if it is a conditional branch, set cond field
|
||||
if (opcode == ARM::Bcc) {
|
||||
op = getMachineOpValue(MI,1);
|
||||
Value &= 0x0FFFFFFF; // clear conditional field
|
||||
Value |= op << 28; // set conditional field
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case ARMII::BranchMisc: {
|
||||
// set opcode (bit[7:4])
|
||||
unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
|
||||
Value |= BaseOpcode << 4;
|
||||
// set bit[27:24] to 1, set bit[23:20] to 2 and set bit[19:8] to 0xFFF
|
||||
Value |= 0x12fff << 8;
|
||||
|
||||
if (opcode == ARM::BX_RET)
|
||||
op = 0xe;
|
||||
op = 0xe; // the return register is LR
|
||||
else
|
||||
// otherwise, set the return register
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op;
|
||||
|
||||
@ -272,12 +336,15 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
break;
|
||||
}
|
||||
case ARMII::AddrMode1: {
|
||||
// set opcode (bit[24:21]) of data-processing instructions
|
||||
unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
|
||||
Value |= BaseOpcode << 21;
|
||||
|
||||
// treat 3 special instructions: MOVsra_flag, MOVsrl_flag and
|
||||
// MOVrx.
|
||||
unsigned Format = (Desc->TSFlags & ARMII::FormMask);
|
||||
if (Format == ARMII::DPRdMisc) {
|
||||
Value |= getMachineOpValue(MI,0) << 12;
|
||||
Value |= getMachineOpValue(MI,0) << ARMII::RegRdShift;
|
||||
Value |= getMachineOpValue(MI,1);
|
||||
switch(opcode) {
|
||||
case ARM::MOVsra_flag: {
|
||||
@ -298,20 +365,26 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
break;
|
||||
}
|
||||
|
||||
bool IsDataProcessing3 = false;
|
||||
|
||||
if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS ||
|
||||
Format == ARMII::DPRSoRegS) {
|
||||
Value |= 1 << 20;
|
||||
IsDataProcessing3 = true;
|
||||
}
|
||||
|
||||
// Data processing operand instructions has 3 possible encodings (for more
|
||||
// information, see ARM-ARM page A3-10):
|
||||
// 1. <instr> <Rd>,<shifter_operand>
|
||||
// 2. <instr> <Rn>,<shifter_operand>
|
||||
// 3. <instr> <Rd>,<Rn>,<shifter_operand>
|
||||
bool IsDataProcessing1 = Format == ARMII::DPRdIm ||
|
||||
Format == ARMII::DPRdReg ||
|
||||
Format == ARMII::DPRdSoReg;
|
||||
bool IsDataProcessing2 = Format == ARMII::DPRnIm ||
|
||||
Format == ARMII::DPRnReg ||
|
||||
Format == ARMII::DPRnSoReg;
|
||||
bool IsDataProcessing3 = false;
|
||||
|
||||
// set bit S(20)
|
||||
if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS ||
|
||||
Format == ARMII::DPRSoRegS || IsDataProcessing2) {
|
||||
Value |= 1 << ARMII::S_BitShift;
|
||||
IsDataProcessing3 = !IsDataProcessing2;
|
||||
}
|
||||
|
||||
IsDataProcessing3 = Format == ARMII::DPRIm ||
|
||||
Format == ARMII::DPRReg ||
|
||||
Format == ARMII::DPRSoReg ||
|
||||
@ -320,22 +393,24 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,0);
|
||||
if (IsDataProcessing1 || IsDataProcessing3) {
|
||||
Value |= op << 12;
|
||||
Value |= op << ARMII::RegRdShift;
|
||||
} else if (IsDataProcessing2) {
|
||||
Value |= op << 16;
|
||||
Value |= op << ARMII::RegRnShift;
|
||||
}
|
||||
|
||||
// set second operand of data processing #3 instructions
|
||||
if (IsDataProcessing3) {
|
||||
op = getMachineOpValue(MI,1);
|
||||
Value |= op << 16;
|
||||
Value |= op << ARMII::RegRnShift;
|
||||
}
|
||||
|
||||
unsigned OperandIndex = IsDataProcessing3 ? 2 : 1;
|
||||
// set shift operand
|
||||
switch (Format) {
|
||||
case ARMII::DPRdIm: case ARMII::DPRnIm:
|
||||
case ARMII::DPRIm: case ARMII::DPRImS: {
|
||||
Value |= 1 << 25;
|
||||
// set bit I(25) to identify this is the immediate form of <shifter_op>
|
||||
Value |= 1 << ARMII::I_BitShift;
|
||||
// set immed_8 field
|
||||
const MachineOperand &MO = MI.getOperand(OperandIndex);
|
||||
op = ARM_AM::getSOImmVal(MO.getImmedValue());
|
||||
Value |= op;
|
||||
@ -344,6 +419,7 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
}
|
||||
case ARMII::DPRdReg: case ARMII::DPRnReg:
|
||||
case ARMII::DPRReg: case ARMII::DPRRegS: {
|
||||
// set last operand (register Rm)
|
||||
op = getMachineOpValue(MI,OperandIndex);
|
||||
Value |= op;
|
||||
|
||||
@ -351,12 +427,20 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
}
|
||||
case ARMII::DPRdSoReg: case ARMII::DPRnSoReg:
|
||||
case ARMII::DPRSoReg: case ARMII::DPRSoRegS: {
|
||||
// set last operand (register Rm)
|
||||
op = getMachineOpValue(MI,OperandIndex);
|
||||
Value |= op;
|
||||
|
||||
const MachineOperand &MO1 = MI.getOperand(OperandIndex + 1);
|
||||
const MachineOperand &MO2 = MI.getOperand(OperandIndex + 2);
|
||||
// identify it the instr is in immed or register shifts encoding
|
||||
bool IsShiftByRegister = MO1.getReg() > 0;
|
||||
// set shift operand (bit[6:4]).
|
||||
// ASR - 101 if it is in register shifts encoding; 100, otherwise.
|
||||
// LSL - 001 if it is in register shifts encoding; 000, otherwise.
|
||||
// LSR - 011 if it is in register shifts encoding; 010, otherwise.
|
||||
// ROR - 111 if it is in register shifts encoding; 110, otherwise.
|
||||
// RRX - 110 and bit[11:7] clear.
|
||||
switch(ARM_AM::getSORegShOp(MO2.getImmedValue())) {
|
||||
default: assert(0 && "Unknown shift opc!");
|
||||
case ARM_AM::asr: {
|
||||
@ -390,13 +474,16 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// set the field related to shift operations (except rrx).
|
||||
if(ARM_AM::getSORegShOp(MO2.getImmedValue()) != ARM_AM::rrx)
|
||||
if(IsShiftByRegister) {
|
||||
// set the value of bit[11:8] (register Rs).
|
||||
assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
|
||||
op = ARMRegisterInfo::getRegisterNumbering(MO1.getReg());
|
||||
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
|
||||
Value |= op << 8;
|
||||
Value |= op << ARMII::RegRsShift;
|
||||
} else {
|
||||
// set the value of bit [11:7] (shift_immed field).
|
||||
op = ARM_AM::getSORegOffset(MO2.getImm());
|
||||
Value |= op << 7;
|
||||
}
|
||||
@ -409,83 +496,107 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
break;
|
||||
}
|
||||
case ARMII::AddrMode2: {
|
||||
// bit 26 is always 1
|
||||
Value |= 1 << 26;
|
||||
|
||||
unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask);
|
||||
// if the instruction uses offset addressing or pre-indexed addressing,
|
||||
// set bit P(24) to 1
|
||||
if (Index == ARMII::IndexModePre || Index == 0)
|
||||
Value |= 1 << 24;
|
||||
Value |= 1 << ARMII::IndexShift;
|
||||
// if the instruction uses post-indexed addressing, set bit W(21) to 1
|
||||
if (Index == ARMII::IndexModePre)
|
||||
Value |= 1 << 21;
|
||||
|
||||
unsigned Format = (Desc->TSFlags & ARMII::FormMask);
|
||||
// If it is a load instruction (except LDRD), set bit L(20) to 1
|
||||
if (Format == ARMII::LdFrm)
|
||||
Value |= 1 << 20;
|
||||
Value |= 1 << ARMII::L_BitShift;
|
||||
|
||||
// set bit B(22)
|
||||
unsigned BitByte = getBaseOpcodeFor(Desc);
|
||||
Value |= BitByte << 22;
|
||||
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op << 12;
|
||||
Value |= op << ARMII::RegRdShift;
|
||||
|
||||
// addressing mode
|
||||
// set second operand
|
||||
op = getMachineOpValue(MI,1);
|
||||
Value |= op << 16;
|
||||
Value |= op << ARMII::RegRnShift;
|
||||
|
||||
const MachineOperand &MO2 = MI.getOperand(2);
|
||||
const MachineOperand &MO3 = MI.getOperand(3);
|
||||
|
||||
Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << 23;
|
||||
// set bit U(23) according to signal of immed value (positive or negative)
|
||||
Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
|
||||
ARMII::U_BitShift;
|
||||
if (!MO2.getReg()) { // is immediate
|
||||
if (ARM_AM::getAM2Offset(MO3.getImm()))
|
||||
// set the value of offset_12 field
|
||||
Value |= ARM_AM::getAM2Offset(MO3.getImm());
|
||||
break;
|
||||
}
|
||||
|
||||
Value |= 1 << 25;
|
||||
// set bit I(25), because this is not in immediate enconding.
|
||||
Value |= 1 << ARMII::I_BitShift;
|
||||
assert(MRegisterInfo::isPhysicalRegister(MO2.getReg()));
|
||||
// set bit[3:0] to the corresponding Rm register
|
||||
Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
|
||||
|
||||
// if this instr is in scaled register offset/index instruction, set
|
||||
// shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
|
||||
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
|
||||
unsigned ShiftOp = getShiftOp(MO3);
|
||||
Value |= ShiftOp << 5;
|
||||
Value |= ShImm << 7;
|
||||
Value |= ShiftOp << 5; // shift
|
||||
Value |= ShImm << 7; // shift_immed
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case ARMII::AddrMode3: {
|
||||
|
||||
unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask);
|
||||
// if the instruction uses offset addressing or pre-indexed addressing,
|
||||
// set bit P(24) to 1
|
||||
if (Index == ARMII::IndexModePre || Index == 0)
|
||||
Value |= 1 << 24;
|
||||
Value |= 1 << ARMII::IndexShift;
|
||||
|
||||
unsigned Format = (Desc->TSFlags & ARMII::FormMask);
|
||||
if (Format == ARMII::LdFrm)
|
||||
Value |= 1 << 20;
|
||||
// If it is a load instruction (except LDRD), set bit L(20) to 1
|
||||
if (Format == ARMII::LdFrm && opcode != ARM::LDRD)
|
||||
Value |= 1 << ARMII::L_BitShift;
|
||||
|
||||
// bit[7:4] is the opcode of this instruction class (bits S and H).
|
||||
unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
|
||||
Value |= BaseOpcode << 4;
|
||||
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,0);
|
||||
Value |= op << 12;
|
||||
Value |= op << ARMII::RegRdShift;
|
||||
|
||||
// addressing mode
|
||||
// set second operand
|
||||
op = getMachineOpValue(MI,1);
|
||||
Value |= op << 16;
|
||||
Value |= op << ARMII::RegRnShift;
|
||||
|
||||
const MachineOperand &MO2 = MI.getOperand(2);
|
||||
const MachineOperand &MO3 = MI.getOperand(3);
|
||||
|
||||
Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << 23;
|
||||
// set bit U(23) according to signal of immed value (positive or negative)
|
||||
Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
|
||||
ARMII::U_BitShift;
|
||||
|
||||
// if this instr is in register offset/index encoding, set bit[3:0]
|
||||
// to the corresponding Rm register.
|
||||
if (MO2.getReg()) {
|
||||
Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
|
||||
break;
|
||||
}
|
||||
|
||||
// if this instr is in immediate offset/index encoding, set bit 22 to 1
|
||||
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
|
||||
Value |= 1 << 22;
|
||||
// set operands
|
||||
Value |= (ImmOffs >> 4) << 8; // immedH
|
||||
Value |= (ImmOffs & ~0xF); // immedL
|
||||
}
|
||||
@ -493,30 +604,36 @@ unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
|
||||
break;
|
||||
}
|
||||
case ARMII::AddrMode4: {
|
||||
// bit 27 is always 1
|
||||
Value |= 1 << 27;
|
||||
|
||||
unsigned Format = (Desc->TSFlags & ARMII::FormMask);
|
||||
// if it is a load instr, set bit L(20) to 1
|
||||
if (Format == ARMII::LdFrm)
|
||||
Value |= 1 << 20;
|
||||
Value |= 1 << ARMII::L_BitShift;
|
||||
|
||||
unsigned OpIndex = 0;
|
||||
|
||||
// set first operand
|
||||
op = getMachineOpValue(MI,OpIndex);
|
||||
Value |= op << 16;
|
||||
Value |= op << ARMII::RegRnShift;
|
||||
|
||||
// set addressing mode
|
||||
// set addressing mode by modifying bits U(23) and P(24)
|
||||
// IA - Increment after - bit U = 1 and bit P = 0
|
||||
// IB - Increment before - bit U = 1 and bit P = 1
|
||||
// DA - Decrement after - bit U = 0 and bit P = 0
|
||||
// DB - Decrement before - bit U = 0 and bit P = 1
|
||||
const MachineOperand &MO = MI.getOperand(OpIndex + 1);
|
||||
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
|
||||
switch(Mode) {
|
||||
default: assert(0 && "Unknown addressing sub-mode!");
|
||||
case ARM_AM::ia: Value |= 0x1 << 23; break;
|
||||
case ARM_AM::ib: Value |= 0x2 << 23; break;
|
||||
case ARM_AM::ib: Value |= 0x3 << 23; break;
|
||||
case ARM_AM::da: break;
|
||||
case ARM_AM::db: Value |= 0x1 << 24; break;
|
||||
}
|
||||
|
||||
// set flag W
|
||||
// set bit W(21)
|
||||
if (ARM_AM::getAM4WBFlag(MO.getImm()))
|
||||
Value |= 0x1 << 21;
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user