Fixed vector widening of binary instructions that can trap. Patch by Visa Putkinen!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106038 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Mon P Wang 2010-06-15 20:29:05 +00:00
parent 71907fbebf
commit 9c4a84b4f3
3 changed files with 116 additions and 27 deletions

View File

@ -1271,7 +1271,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
EVT WidenEltVT = WidenVT.getVectorElementType(); EVT WidenEltVT = WidenVT.getVectorElementType();
EVT VT = WidenVT; EVT VT = WidenVT;
unsigned NumElts = VT.getVectorNumElements(); unsigned NumElts = VT.getVectorNumElements();
while (!TLI.isTypeLegal(VT) && NumElts != 1) { while (!TLI.isTypeSynthesizable(VT) && NumElts != 1) {
NumElts = NumElts / 2; NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts); VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
} }
@ -1286,13 +1286,20 @@ SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements()); return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
} else { } else {
// Since the operation can trap, apply operation on the original vector. // Since the operation can trap, apply operation on the original vector.
EVT MaxVT = VT;
SDValue InOp1 = GetWidenedVector(N->getOperand(0)); SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1)); SDValue InOp2 = GetWidenedVector(N->getOperand(1));
unsigned CurNumElts = N->getValueType(0).getVectorNumElements(); unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
SmallVector<SDValue, 16> ConcatOps(CurNumElts); SmallVector<SDValue, 16> ConcatOps(CurNumElts);
unsigned ConcatEnd = 0; // Current ConcatOps index. unsigned ConcatEnd = 0; // Current ConcatOps index.
unsigned Idx = 0; // Current Idx into input vectors. int Idx = 0; // Current Idx into input vectors.
// NumElts := greatest synthesizable vector size (at most WidenVT)
// while (orig. vector has unhandled elements) {
// take munches of size NumElts from the beginning and add to ConcatOps
// NumElts := next smaller supported vector size or 1
// }
while (CurNumElts != 0) { while (CurNumElts != 0) {
while (CurNumElts >= NumElts) { while (CurNumElts >= NumElts) {
SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1, SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
@ -1303,26 +1310,21 @@ SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
Idx += NumElts; Idx += NumElts;
CurNumElts -= NumElts; CurNumElts -= NumElts;
} }
EVT PrevVecVT = VT;
do { do {
NumElts = NumElts / 2; NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts); VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
} while (!TLI.isTypeLegal(VT) && NumElts != 1); } while (!TLI.isTypeSynthesizable(VT) && NumElts != 1);
if (NumElts == 1) { if (NumElts == 1) {
// Since we are using concat vector, build a vector from the scalar ops.
SDValue VecOp = DAG.getUNDEF(PrevVecVT);
for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) { for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
InOp1, DAG.getIntPtrConstant(Idx)); InOp1, DAG.getIntPtrConstant(Idx));
SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
InOp2, DAG.getIntPtrConstant(Idx)); InOp2, DAG.getIntPtrConstant(Idx));
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, PrevVecVT, VecOp, ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
DAG.getNode(Opcode, dl, WidenEltVT, EOp1, EOp2), EOp1, EOp2);
DAG.getIntPtrConstant(i));
} }
CurNumElts = 0; CurNumElts = 0;
ConcatOps[ConcatEnd++] = VecOp;
} }
} }
@ -1333,23 +1335,65 @@ SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
return ConcatOps[0]; return ConcatOps[0];
} }
// Rebuild vector to one with the widen type // while (Some element of ConcatOps is not of type MaxVT) {
// From the end of ConcatOps, collect elements of the same type and put
// them into an op of the next larger supported type
// }
while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
Idx = ConcatEnd - 1; Idx = ConcatEnd - 1;
while (Idx != 0) {
VT = ConcatOps[Idx--].getValueType(); VT = ConcatOps[Idx--].getValueType();
while (Idx != 0 && ConcatOps[Idx].getValueType() == VT) while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
--Idx; Idx--;
if (Idx != 0) {
VT = ConcatOps[Idx].getValueType(); int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
ConcatOps[Idx+1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, EVT NextVT;
&ConcatOps[Idx+1], ConcatEnd - Idx - 1); do {
NextSize *= 2;
NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
} while (!TLI.isTypeSynthesizable(NextVT));
if (!VT.isVector()) {
// Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
SDValue VecOp = DAG.getUNDEF(NextVT);
unsigned NumToInsert = ConcatEnd - Idx - 1;
for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
ConcatOps[OpIdx], DAG.getIntPtrConstant(i));
}
ConcatOps[Idx+1] = VecOp;
ConcatEnd = Idx + 2; ConcatEnd = Idx + 2;
} }
else {
// Vector type, create a CONCAT_VECTORS of type NextVT
SDValue undefVec = DAG.getUNDEF(VT);
unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
unsigned RealVals = ConcatEnd - Idx - 1;
unsigned SubConcatEnd = 0;
unsigned SubConcatIdx = Idx + 1;
while (SubConcatEnd < RealVals)
SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
while (SubConcatEnd < OpsToConcat)
SubConcatOps[SubConcatEnd++] = undefVec;
ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
NextVT, &SubConcatOps[0],
OpsToConcat);
ConcatEnd = SubConcatIdx + 1;
}
} }
unsigned NumOps = WidenVT.getVectorNumElements()/VT.getVectorNumElements(); // Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
// add undefs of size MaxVT until ConcatOps grows to length of WidenVT
unsigned NumOps =
WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
if (NumOps != ConcatEnd ) { if (NumOps != ConcatEnd ) {
SDValue UndefVal = DAG.getUNDEF(VT); SDValue UndefVal = DAG.getUNDEF(MaxVT);
for (unsigned j = ConcatEnd; j < NumOps; ++j) for (unsigned j = ConcatEnd; j < NumOps; ++j)
ConcatOps[j] = UndefVal; ConcatOps[j] = UndefVal;
} }
@ -1379,7 +1423,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
return DAG.getNode(Opcode, dl, WidenVT, InOp); return DAG.getNode(Opcode, dl, WidenVT, InOp);
} }
if (TLI.isTypeLegal(InWidenVT)) { if (TLI.isTypeSynthesizable(InWidenVT)) {
// Because the result and the input are different vector types, widening // Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make // the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input // it an illegal type that might lead to repeatedly splitting the input
@ -1521,7 +1565,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts); NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
} }
if (TLI.isTypeLegal(NewInVT)) { if (TLI.isTypeSynthesizable(NewInVT)) {
// Because the result and the input are different vector types, widening // Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make // the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input // it an illegal type that might lead to repeatedly splitting the input
@ -1662,7 +1706,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
SatOp, CvtCode); SatOp, CvtCode);
} }
if (TLI.isTypeLegal(InWidenVT)) { if (TLI.isTypeSynthesizable(InWidenVT)) {
// Because the result and the input are different vector types, widening // Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make // the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input // it an illegal type that might lead to repeatedly splitting the input
@ -1988,7 +2032,7 @@ SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
if (InWidenSize % Size == 0 && !VT.isVector()) { if (InWidenSize % Size == 0 && !VT.isVector()) {
unsigned NewNumElts = InWidenSize / Size; unsigned NewNumElts = InWidenSize / Size;
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts); EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
if (TLI.isTypeLegal(NewVT)) { if (TLI.isTypeSynthesizable(NewVT)) {
SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp); SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp, return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
DAG.getIntPtrConstant(0)); DAG.getIntPtrConstant(0));
@ -2086,7 +2130,7 @@ static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
unsigned MemVTWidth = MemVT.getSizeInBits(); unsigned MemVTWidth = MemVT.getSizeInBits();
if (MemVT.getSizeInBits() <= WidenEltWidth) if (MemVT.getSizeInBits() <= WidenEltWidth)
break; break;
if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 && if (TLI.isTypeSynthesizable(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
(MemVTWidth <= Width || (MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) { (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
RetVT = MemVT; RetVT = MemVT;
@ -2100,7 +2144,7 @@ static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) { VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
EVT MemVT = (MVT::SimpleValueType) VT; EVT MemVT = (MVT::SimpleValueType) VT;
unsigned MemVTWidth = MemVT.getSizeInBits(); unsigned MemVTWidth = MemVT.getSizeInBits();
if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() && if (TLI.isTypeSynthesizable(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
(WidenWidth % MemVTWidth) == 0 && (WidenWidth % MemVTWidth) == 0 &&
(MemVTWidth <= Width || (MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) { (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {

View File

@ -0,0 +1,8 @@
; RUN: llc -march=x86 %s
%vec = type <9 x float>
define %vec @vecdiv( %vec %p1, %vec %p2)
{
%result = fdiv %vec %p1, %p2
ret %vec %result
}

View File

@ -0,0 +1,37 @@
; RUN: llvm-as < %s | lli
%vec = type <6 x float>
define %vec @vecdiv( %vec %p1, %vec %p2)
{
%result = fdiv %vec %p1, %p2
ret %vec %result
}
@a = constant %vec < float 2.0, float 4.0, float 8.0, float 16.0, float 32.0, float 64.0 >
@b = constant %vec < float 2.0, float 2.0, float 2.0, float 2.0, float 2.0, float 2.0 >
; Expected result: < 1.0, 2.0, 4.0, ..., 2.0^(n-1) >
; main() returns 0 if the result is expected and 1 otherwise
define i32 @main() nounwind {
entry:
%avec = load %vec* @a
%bvec = load %vec* @b
%res = call %vec @vecdiv(%vec %avec, %vec %bvec)
br label %loop
loop:
%idx = phi i32 [0, %entry], [%nextInd, %looptail]
%expected = phi float [1.0, %entry], [%nextExpected, %looptail]
%elem = extractelement %vec %res, i32 %idx
%expcmp = fcmp oeq float %elem, %expected
br i1 %expcmp, label %looptail, label %return
looptail:
%nextExpected = fmul float %expected, 2.0
%nextInd = add i32 %idx, 1
%cmp = icmp slt i32 %nextInd, 6
br i1 %cmp, label %loop, label %return
return:
%retval = phi i32 [0, %looptail], [1, %loop]
ret i32 %retval
}